Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three-dimensional photonic crystals will revolutionize telecommunications

21.11.2007
Faster and more efficient thanks to "defects"
BASF scientists research in the EU project "NewTon"

Smaller, faster, more efficient: BASF research scientists are helping to revolutionize the future world of telecommunications – with the aid of three-dimensional photonic crystals. In a three-year project, BASF is researching into the development of these crystals together with partners such as Hanover Laser Center, Thales Aerospace Division, Photon Design Ltd., the Technical University of Denmark and the Ecole Nationale Supérieure des Télécommunications de Bretagne. By the end of 2008, the partners in the "NewTon" project expect to have developed the first functional components of this new technology. The long-term goal is to use three-dimensional photonic crystals as construction elements in telecommunication. Half of the project is being funded by the European Union.

Many times more information can be transmitted by light in the same time as has so far been possible with electricity. This is why telephone conversations, websites, photographs or music, for example, are now increasingly being transmitted in optical fibers. At present, however, this technology still has one drawback at the "network nodes". Indeed, at these nodes the routing of the information to the end-user is still done electrically, because no competitive, compact all-optical routing processor is yet available. This costs time and energy.

This is where the research activities of BASF and its partners come into the picture. They are developing a photonic crystal capable of reflecting only single colors of the white light depending on the observation angle. This phenomenon is known from nature: the splendid, shimmering colors on butterfly wings derive from the properties of photonic crystals.

"A structured three-dimensional photonic crystal could be the key component for a compact optical semiconductor or even for an all-optical routing processor", is the opinion of Dr. Reinhold J. Leyrer who is BASF’s project leader in Polymer Research division. "Converting optical signals into electrical signals would then be superfluous". But the scientists first have to develop a stable, structured three-dimensional photonic crystal. And exactly this is the goal of the EU project "NewTon". This kind of basic research projects are especially suited to activate the European scientific competence, in order to strengthen the competitiveness of the whole region and of all involved industrial branches.

The production of these crystals is based on aqueous dispersions, a key competence of BASF. These dispersions contain polymer spherical particles measuring about 200 nanometers which, when the fluid evaporates, are forming a homogeneous protective film as it is expected with the paints. Depending from the chemical structure of the polymer particles they can also arrange themselves into a regular lattice structure, forming a crystal. The challenge facing the Ludwigshafen scientists is to enlarge the polymer particles contained in the dispersions to 1000 nanometers in such a way, that they all have exactly the same diameter. Using emulsion polymerization, they also apply an additional structure measuring less than 20 nanometers onto the polystyrene particles. The intention is to develop the most stable possible, large volume, three-dimensional crystal into which one of the project partners will then introduce the desired structure, the so called "defects".

Light at certain wavelengths then travels along these defects and even around sharp corners: the photonic crystal then acts as a photoconductor and takes the control over the propagation of light. The resulting structured crystal lattice is used in the further manufacturing process as a template, as the scientists call it. The spaces between the polymer spherical particles in the crystal lattice are filled with silicon. The researchers then "burn" the polymer particles out of the lattice. The result: a stable structure that is a mirror image of the original crystal. Crystals of this type could be used as components for an all-optical routing processor in telecommunications.

Manufacturers of components for telecommunication systems would benefit most from the use of photonic crystals. Since the crystals are smaller than electronic components, equipment would also become increasingly smaller and cheaper – while simultaneously offering improved performance. Components and equipment based on photonic crystals would also be more resistant and less vulnerable to electromagnetic radiation. End users will gain from these advances. In the long term, transmitting information through electrical signals will restrict speed and transmission capacity in telecommunications. The long-term goal is therefore to develop a communications technology based entirely on transmitting information by light waves. The research activities of the "NewTon" project are laying the foundations for this scenario.

For further information about this project, please click on: www.projectnewton.com

BASF is the world’s leading chemical company: The Chemical Company. Its portfolio ranges from chemicals, plastics, performance products, agricultural products and fine chemicals to crude oil and natural gas. As a reliable partner to virtually all industries, BASF’s high-value products and intelligent system solutions help its customers to be more successful. BASF develops new technologies and uses them to meet the challenges of the future and open up additional market opportunities. It combines economic success with environmental protection and social responsibility, thus contributing to a better future. BASF has approximately 95,000 employees and posted sales of €52.6 billion in 2006. Further information on BASF is available on the Internet at www.basf.com.

Melanie Steigelmann | EurekAlert!
Further information:
http://www.basf.com
http://www.projectnewton.com

More articles from Information Technology:

nachricht Quantum bugs, meet your new swatter
20.08.2018 | Rice University

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>