Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GPS-like technology helps pinpoint best methods for moving injured players

19.09.2007
The 15 minutes it took to remove Buffalo Bills player Kevin Everett off the field after he suffered a spinal cord injury may seem like a long time for someone needing acute medical care, but in fact, those minutes underscore how critical it is to carefully move a player with a suspected spinal cord injury off the field. It also highlights the challenges faced when needing to minimize any further movement to an injured spinal cord.

And those challenges have been the focus over the past eight years for Glenn Rechtine, M.D., professor of Orthopaedics at the University of Rochester Medical Center, and president of the American Spinal Injury Association. He and his colleagues believe they now know the best methods to move injured players off the field thanks to GPS-like technology.

Electromagnetic tracking devices, which work similar to GPS technology, can measure movement down to fractions of a millimeter, about the width of a piece of construction paper. By placing three to five of these tiny devices on the upper body of a cadaver, researchers were able to precisely measure how much an injured cervical spine moves at several important points in the process of removing a player from the field including taking off a helmet, putting on a cervical collar, and placing a player on the backboard for transportation to the ambulance.

The data was then analyzed to pinpoint which removal method produced the least amount of cervical spine movement, including the neck’s rotation, flexion and lateral bending. The team’s findings have been published in several journals, such as Spine, the Journal of Trauma and the Journal of Neurosurgery Spine. In the near future, a manuscript will appear in the Journal of Athletic Training showing that a modified “Lift and Slide” method appears to produce the least amount of movement to an injured cervical spine.

“While we strive to obtain zero movement, as that is what is best to help prevent further injury to the area, we know that is not possible,” Rechtine said. “Now, we have scientific evidence to guide us in knowing which method is the best when working with these injured players.”

The most common methods for moving players off the field currently are:

Log Roll: Where a player is gently rolled onto his/her side and the board is placed under the body.

Lift and Slide: Where one person holds the player’s head, and three people straddle the body, and together they all lift the player while a fifth person slides a board under the player.

Modified Lift and Slide: Similar to the Lift and Slide, but uses extra people to lift the player, and holds the head a specific way.

Rechtine’s research shows that the last method, the Modified Lift and Slide, produces the least movement to an injured cervical spine.

He added that having a trained team ready to go is one of the most important weapons in minimizing movement. “Regardless of the technique chosen, the key to a successful patient transfer hinges on having a specialized, trained and practiced team ready for such conditions,” he said.

In addition to his work with athletes, Rechtine’s research also has focused on how to minimize movement of an injured spinal cord once a patient is in a hospital setting.

Germaine Reinhardt | EurekAlert!
Further information:
http://www.urmc.rochester.edu

More articles from Information Technology:

nachricht ETRI exchanged quantum information on daylight in a free-space quantum key distribution
10.12.2018 | National Research Council of Science & Technology

nachricht Three components on one chip
06.12.2018 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

ETRI exchanged quantum information on daylight in a free-space quantum key distribution

10.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>