Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical Imaging: potential new crime busting tool

03.08.2007
A new fingerprinting technique could potentially detect the diet, race and sex of a suspected criminal, according to new research published in the August edition of the journal Analytical Chemistry.

The team, led by Professor Sergei Kazarian from Imperial College London’s Department of Chemical Engineering, has devised a technique which collects fingerprints along with their chemical residue and keeps them intact for future reference.

Chemical residues contain a few millionths of a gram of fluid and can be found on all fingerprints. Conventional fingerprinting techniques often distort or destroy vital chemical information with no easy way of lifting residues for chemical imaging, until now.

Imperial scientists found that the use of gel tapes, commercial gelatine based tape, provides a simple method for collection and transportation of prints for chemical imaging analysis.

The prints, once lifted, are analysed in a spectroscopic microscope. The sample is irradiated with infrared rays to identify individual molecules within the print to give a detailed chemical composition.

The information is then processed by an infrared array detector, originally developed by the U.S. military in smart missile technology. The array detector chemically maps the residue. This process builds up a picture, or chemical photograph, and allows for the most comprehensive information obtained from a fingerprint.

“The combined operational advantages and benefits for forensic scientists of tape lifting prints and spectroscopic imaging really maximises the amount of information one can obtain from fingerprints. Our trials show that this technique could play a significant role in the fight against crime,” said Professor Kazarian.

In many cases, this information is enough to determine valuable clues about a person beyond the fingerprint itself. It could potentially identify traces of items people came in contact with, such as gunpowder, narcotics and biological or chemical weapons.

Chemical clues could also highlight specific traits in a person. A strong trace of urea, a chemical found in urine, could indicate a male. Weak traces of urea in a chemical sample could indicate a female. Specific amino acids could potentially indicate whether the suspect was a vegetarian or meat-eater.

Professor Kazarian believes that this technique could allow forensic scientists to observe how fingerprints change in time and within different environments.

“By focussing on what is left in a fingerprint after periods of time, scientists could potentially gauge how old a crime scene is. Studying what happens to prints, when they are exposed to high temperatures, could also be particularly significant, especially in arson cases where lifting prints has been notoriously hard,” he said.

Speculating about the possible future benefits of this process, Professor Sergei Kazarian said:

“In the courtroom of the near future, chemical images could feature as key evidence. I hope our work assists law enforcement authorities to bring dangerous criminals to justice.”

Colin Smith | alfa
Further information:
http://www.imperial.ac.uk

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>