Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interactive 3-D Map in OR Can Better Guide Jefferson Neurological Surgeons Through the Brain During Procedure

01.08.2007
Jefferson Hospital for Neuroscience is one of first medical centers in the U.S. to develop and begin using translational, interactive 3-D technology to map the human brain and help guide neurological surgeons during epilepsy surgery and procedures to remove malignant brain tumors.

This imaging technology can help surgeons better determine the location of tumors for removal. The 3-D mapping also helps guide surgeons during epilepsy procedures to see exactly where electrodes have been placed in the brain and portions of the brain that may have to be removed to help stop seizures.

“Neurosurgery is strongly dependent on image guidance, and in order to fully explore the massive amount of data provided by modern imaging devices, neuroscientists and neurosurgeons are steadily asking for improved visualization techniques, said radiologic researcher Song Lai, Ph.D, Associate Professor of Radiology and Director of MRI Physics, Jefferson Medical College of Thomas Jefferson University, whose team developed the software, dubbed MediCAD (computer assisted diagnostic), over the last few years.

“This multi-disciplinary project represents a unique combination of advanced imaging technology development with significant clinical applications, bringing together different but complementary expertise, including MRI physicists, computer scientists, neurosurgeons, and neuroradiologists,” Dr. Lai noted.

DTI (diffusion tensor imaging) and fMRI (functional magnetic resonance imaging) images of the brain are integrated and downloaded, using the MediCAD software, onto PCs in the operating room (OR). This allows the surgeons to view almost real-time digital map of a patient’s brain and better perceive brain activity information. MediCAD also allows the surgeons to virtual “slice” the brain into sections, zoom in for close-ups of sections of the brain and even rotate the image in various directions.

“Therefore, incorporation of DTI and fMRI in pre-surgical planning holds great promise in advancing our ability to reach the main goal of neurosurgery, i.e., removing a targeted lesion while minimizing postoperative neurological deficits by avoiding damage to the involved functioning white matter fiber tracts and cortical gray matter,” said Dr. Lai.

“This exciting technology also allows us to see the special relationship between the lesions and structures affected by the tumors,” said neurosurgeon David Andrews, M.D. “We can see whether the tumors are infiltrating or displacing the white matter tracts and this information has both practical and prognostic significance.

“Specific to brain tumor patients, it is important to be able to distinguish between infiltrative and expansive tumors, since the latter growth pattern allows a complete resection without neurologic compromise,” Dr. Andrews noted. “We have also learned that the expansive tumors lead to a far better prognosis than the infiltrative tumors.”

During a typical epilepsy surgery, neurological surgeons and neurologists would view conventional MRI or CATscan images of a patient’s brain prior to surgery and then “visualize where implanted electrodes were in the brain during the procedure,” explained neurologist Christopher Skidmore, M.D., of the Jefferson Comprehensive Epilepsy Center. This technology allows us to better understand the relationship between areas where seizures are coming from and vital brain structures so that a safe and effective surgery can be performed with the goal of stopping the patient’s seizures.”

Patients who undergo epilepsy surgery have a number of advanced diagnostic imaging modalities; including MRI, fMRI, DTI, fcMRI, PET Scanning and implant electrodes, said Ashwini Sharan, M.D., neurosurgeon at the Jefferson Comprehensive Epilepsy Center

“The MediCAD technology will serve as a platform for integration and joint analysis of all this information in the future,” Dr. Sharan said. Without such computer back-up, it’s impossible for us to even comprehensively analyze the information which we have. This will, in the long run, only improve the care on epilepsy patients.

As part of this new 3-D imaging process, a patient’s brain is typically scanned the day before surgery in order to obtain the most up-to-date imaging data.

“Due to the time constraint between scanning and the actual surgery, neurosurgeons require a tool that can provide detailed integrated information interactively in a timely fashion,” said Dr. Andrews.

The images are then sent through an electronic archival system know as PACS (picture archiving and communication system)to computers in the OR.

The need for this technology was developed out of questions raised in the past by neurological surgeons and scientists, said Dr. Lai, about where tumors are located in juxtaposition to other parts of the brain including white matter fibers and at what points do these fibers go inside a tumor. The fibers carry signals back and forth between areas of the brain and the spinal cord and each fiber is crucial to a particular aspect of how the mind communicates with the body.

“With these questions in mind, a multi-modal visualization system was developed which allows for performing these query tasks in real time and produces quantitative results,” said Dr. Lai. “Pilot studies on both healthy subjects and patients with brain tumors have suggested that our software package can provide intuitive and quantitative answers and further assist in neurosurgical planning.”

The developed software is fast, does not require any pre-processing beyond standard fMRI analysis and is flexible enough to be incorporated into existing complex medical visualization systems, Dr. Lai noted.

Jeff Baxt | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>