Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mobile math lab for cell phones

11.07.2007
Can kids finally get the answer to the perennial question: What do we need to study math for" The latest development of Prof. Michal Yerushalmy, of the Institute for Alternatives in Education of the Faculty of Education at the University of Haifa, may indeed have the answer to this question, through a medium that today's youth understand very well –their cellular telephones.

The applications that Prof. Yerushalmy developed, in cooperation with Arik Weizman and Zohar Shavit of the University of Haifa Computer Science Department with support from Eurocom Israel, can be installed on most cellular phones on the market today. When installed, they enable cellular phones to function like computers which, among other things, are able to perform mathematical functions at different levels – from elementary school geometry to high school level calculus. The applications were developed specifically for the educational system, and they can be used like any application installed on a cell phone. The availability of the medium means that students are no longer reliant on computer classrooms in the school and that educational opportunities are as mobile as students are.

"I believe that mathematics needs to be learned in creative ways, and not by memorization and repetition. Just as physics and biology labs teach through experimentation, I believe that there should also be math labs, where learning is experiential," said Prof. Yerushalmy. According to Prof. Yerushalmy, computerized math labs like these have been developed in the past, but the cost of computers and the limited availability of computer classrooms limited their use. Cellular phone applications are accessible to both teachers and students on the school campus, on the way home or just about anywhere else.

Using cellular telephones provides another advantage: enabling creation of a community of learners. The applications enable users to send graphs and formulas to one another as short text messages (SMS), allowing them to work together to solve problems and involve any number of people to share in the learning process.

A pilot research project, recently completed in the University of Haifa Faculty of Education, evaluated students' use of the applications. As part of the research, participants recorded simple occurrences such as the speed of a dripping faucet, buses pulling away from a bus stop and a number of other events with the video cameras on their cell phones. They were then instructed by Dr. Galit Botzer, who conducted the research, to turn their video clip into a mathematical model using the applications available on their cell phone.

"It was important for us to see whether or not the students actually do use their phone as a medium for communication to help solve the problem. We found that they did indeed use text messaging to send one another information, questions and comments at different times and from different places. Our next step is to engage in more intensive research, and to develop additional, unique applications for cellular phones," said Dr. Botzer.

Amir Gilat | EurekAlert!
Further information:
http://www.haifa.ac.il
http://www.math4mobile.com

More articles from Information Technology:

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

nachricht Robots as Tools and Partners in Rehabilitation
17.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>