Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Silterra and IMEC to continue joint technology development project

14.06.2007
Silterra Malaysia, a leading foundry in Malaysia and IMEC, Europe’s leading independent nanoelectronics and nanotechnology research center based in Belgium, today announced that they have signed an agreement for a joint development project (JDP) to create a foundry-compatible 90-nm CMOS process technology with intention to further scale to 65-nm. A 110-nm derivative will also be developed in parallel. This collaborative project is an extension of the JDP conducted earlier for the 0.13-micron (130-nm) technology and which is already in production at Silterra.

The technology will be ready for production in the second half of 2008 or earlier and will, among other things, utilize low-K inter-metal dielectric and the 193-nm patterning process. The smaller geometries will allow for smaller die sizes and faster transistors, bringing a better price-performance profile to Silterra’s customers. A team of Silterra and IMEC engineers will fine-tune the base-IMEC process at IMEC’s research facility in Leuven to meet the specifications defined by Silterra. The process will have physical design rules and electrical characteristics that match mainstream technologies, enabling customers to seamlessly support their multi-foundry sourcing strategy.

“Silterra is committed to the pure foundry business and more advanced process technology development is essential to support the success of our customers. Many of our major customers adopted the multi-foundry strategy and we will continue to grow with them. This project paves the way towards future technology nodes and a migration path to 300mm,” said Kah-Yee Eg, CEO of Silterra. “As proven in our earlier engagement with IMEC, this JDP will enable Silterra to bring a new process into production quickly.”

“We are very pleased that we will continue the successful collaboration with Silterra to develop a foundry process that will benefit such a wide customer base,” stated Prof. Gilbert Declerck, president and CEO of IMEC. “Our 90-nm platform technology is a great starting point to build on because it is proven and will help shorten development cycle times significantly.”

The new process, like Silterra’s own foundry compatible 0.13- and 0.18-micron logic technologies, is targeted for a wide range of products for consumer, communications and computational applications. In addition, the technology is also optimized for CPU, DSP and graphics applications. This jointly developed foundry process opens the door for Silterra to collaborate with other foundry players in rapidly bringing advanced node densities to production.

“We see significant business growth in the next 2-3 years and will continue to actively invest in process technology,” said Eg. “We had built up strong in-house capabilities in developing process technologies for specific applications such as RF, High Voltage and Low Power in 0.18-micron for the past few years and we are currently developing these application specific process technologies on 0.13-micron. We will continue to move these technologies down to 90-nm and 65-nm with our customers. Our aim is to offer the best total solution to our customers – and the availability of technologies for the right process node is critical to that goal.”

Katrien Marent | alfa
Further information:
http://www.silterra.com
http://www.imec.be

More articles from Information Technology:

nachricht Interactive software tool makes complex mold design simple
16.08.2018 | Institute of Science and Technology Austria

nachricht Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project
16.08.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>