IMEC advancing state-of-the-art in FinFETs

FinFETs are a promising approach to address short-channel effects and leakage issues when scaling CMOS towards the 32nm node and beyond. Doping fluctuations in nano-scale planar devices are one of the several concerns in further scaling, while FinFETs have the potential of being able to operate without channel dopants. IMEC has improved its process to yield reproducible FinFETs with fin widths down to 5nm and high aspect ratio using 193nm immersion lithography and dry etching. By using these ultra-thin body devices, the need of channel doping is eliminated. This results in reduced parametric spread due to dopant fluctuations together with reduced junction leakage.

Analyzing various circuit topologies, IMEC demonstrates experimentally that the performance of FinFET circuits is superior to bulk CMOS circuits and satisfies future digital library requirements. A ring oscillator has been realized with metal gates and un-doped fins showing an inverter delay of 13.9ps at a 1.0V supply voltage and 1.9nA off current. This best low-power performance of FinFETs ever reported results from the undoped channels and improved subthreshold characteristics. Next to the excellent inverter delay, FinFETs provide an extra performance benefit due to their excellent stacked device performance. They allow realizing higher stack heights whereby the same functionality can be implemented with less logic gates resulting in additional area reduction. The potential of FinFETs for large-scale integration has also been demonstrated. To this end, SRAM cells and data path demonstrators with low standby current and good low operating power performance were realized.

The reliability characteristics, both NBTI (negative bias temperature instability) and PBTI (positive bias temperature instability), of the FinFETs have been significantly improved by dielectric passivation based on introducing fluorine into the metal/Hf-based gate stack during gate etching. To this end, IMEC developed a novel, effective and cost-efficient method that requires no extra processing step.

“Although the performance benefits of FinFETs have been recognized for many years, several bottlenecks have to be overcome to bring FinFET technology to manufacturing. These advances have reduced the gap for FinFETs to become a manufacturing technology,” said Luc Van den hove, COO IMEC.

These results were obtained in collaboration with IMEC’s (sub-)32nm CMOS research partners: Infineon, Qimonda, Intel, Micron, NXP, Panasonic, Samsung, STMicroelectronics, Texas Instruments, TSMC and Elpida.

Media Contact

Katrien Marent alfa

More Information:

http://www.imec.be

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Evidence for reversible oxygen ion movement during electrical pulsing

…enabler of the emerging ferroelectricity in binary oxides. In a recent study published in Materials Futures, researchers have uncovered a pivotal mechanism driving the emergence of ferroelectricity in binary oxides….

Next-generation treatments hitch a ride into cancer cells

Researchers from Osaka University discover that opening a channel into cancer cells helps antisense oligonucleotide drugs reach their targets. Antisense oligonucleotides (ASOs) are next-generation drugs that can treat disease by…

Boron deficiency: oilseed rape reacts as with infection and pest infestation

Genetic mechanisms uncovered… Boron deficiency has a devastating effect on oilseed rape and related plants. However, little is known about the underlying genetic mechanisms. A study shows that the response…

Partners & Sponsors