Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Helping young people to understand the world

03.04.2007
University of Nottingham researchers have won £1.1m to develop innovative technology that will boost young people’s understanding of the world, as part of a joint project with Open University researchers.

They will help 11-14-year-old children to take advantage of the very latest in hand-held computer technology — both in the classroom and at home.

The project brings together University of Nottingham and Open University experts in the fields of education, educational technology, psychology and computer science in a bid to make learning more effective. The ultimate aim is to help pupils learn the skills of modern science, taking in subjects such as the environment, natural sciences and the physical world around them.

Over the next three years, researchers will be exploring how to make the best use of new technology to help personalise the way children learn, making it more accessible and more effective.

They are exploring a new approach called ‘scripted inquiry learning’, in which pupils investigate a topic with classmates, by carrying out explorations in their homes and outside, guided by their personal computer. ‘Scripted inquiry learning’ helps pupils to get more personally involved in the learning process — aiding their understanding of the subject.

The project, a collaboration with the Open University, is funded with a grant of £1,187,891 from the Economic and Social Research Council and the Engineering and Physical Sciences Research Council. Funding was awarded as part of an initiative called ‘Technology Enhanced Learning’ as part of the national Teaching and Learning Research Programme.

The project will be led by Professor Mike Sharples, Director of the Learning Sciences Research Institute (LSRI) in the School of Education, University of Nottingham, and Professor Eileen Scanlon of the Open University.

Professor Sharples said: “We now have the opportunity to guide children in doing 21st century science beyond the classroom.

“They will be able to explore issues that matter to them, such as how to understand their bodies and keep fit, by carrying out explorations in their homes and discovery centres. Their mobile computers will coordinate the activities and help them to debate with their peers and experts.”

Co-investigators at The University of Nottingham are Professor Claire O’Malley and Dr Shaaron Ainsworth in the School of Psychology, Professor Steve Benford in the School of Computer Science & Information Technology and Dr Charles Crook in the School of Education. Other partners include Hadden Park High School in Bilborough, Nottingham, and ScienceScope, a company that develops sensing and data logging equipment.

The project aims to link classroom, home and community with the aid of software running on both pupils’ mobile and desktop computers. ‘Scripted inquiry learning’ will help them to understand themselves and the world in which they live, through a scientific process of gathering and assessing evidence, conducting experiments and engaging in informed debate.

The technology will guide pupils through dynamic projects — which can change depending on the profile and input of each individual taking part — monitored and supported by the teacher.

The activities will be based around topic themes of relevance to Key Stage 3 (Myself, My Environment, My Community) that engage young learners in investigating their bodies, their immediate environment and their wider surroundings. These topics are key elements of the new 21st century science curriculum that requires children to reason about the natural sciences as a complex system and to explore how people relate to the physical world.

Members of the project team will work with a panel of teachers and curators to develop specific scripts related to the topic themes. These will guide the learner in making links across different activities – for example reading, data collection and discussion — different technologies, and different settings in which to learn, for example home, the classroom and on school field trips.

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk/public-affairs/press-releases/index.phtml?menu=pressreleases&code=HELP-58/07&create_date=30-mar-2007

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>