Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Electronics engineer predicts fantastic plastic future

29.03.2007
An engineer from The University of Manchester who is pushing boundaries in the field of nanotechnology has been recognised with a prestigious award.

Professor Aimin Song from the School of Electronic and Electrical Engineering (EEE) is one of only eight people to receive a 2007 Brian Mercer Feasibility Award from the Royal Society.

The £30,000 award will assist Professor Song in his efforts to push the processing speed of plastic components way beyond what has previously been achieved.

Plastic electronics arguably came to real prominence after three scientists won the 2000 Nobel Prize for their contribution to the discovery and development of conductive polymer plastics.

The technology opens up the possibility for very flexible, high-tech devices – such as information screens that you can roll up and put in your pocket – being developed.

But while the rise of plastic electronics has brought potential, it has also brought some problems; conventional multi-layered transistors made from polymer plastics offer relatively slow conductivity speeds and involve a complex and costly manufacturing process.

With support and funding from the Engineering and Physical Sciences Research Council (EPSRC), Professor Song has pioneered a way to make single-layered planar plastic transistors and diodes using a fast and simple printing technique.

Professor Song is confident he can push the speed of his organic plastic semiconductors to around 100Mhz – way beyond the 20 Megahertz (Mhz) he has so far achieved.

In the past, multi-layered transistors made from plastic have generally worked at Kilohertz (KHz) speeds or below.

Plastic components such as semiconductors and diodes could be used to create drivers for flexible displays, Radio Frequency Identification Tags (RFIDs) and intelligent disposable sensors.

Professor Song believes this could ultimately lead to the production of information displays that can be rolled up and put into your pocket, and also changeable electronic wallpaper.

Other potential applications include intelligent tickets for public transport systems or road charging schemes and electronic stamps for letters and packages.

Due to the high level of commercial interest in Professor Song’s breakthrough technology, he has formed a company called Plastic ePrint Ltd with support form The University of Manchester Intellectual Property Ltd (UMIP).

The firm is now seeking venture capital funding and is also working on creating demonstration versions of plastic radio frequency (RF) smart cards and developing plastic components for use in flexible displays.

Professor Song, who works in the Microelectronics and Nanostructures group at The University, said: “In the film The Graduate, the character played by Dustin Hoffman is famously advised that the future is plastics. From many points of view, this prediction is quite true and I think that plastics will bring a revolution for the second time in history.

“The components we have developed are simpler and potentially much cheaper to produce and much faster than previous organic electronic devices.

“These advantages come from the simplicity of the single layer, planar structures, rather than the multi-layer vertical structures of conventional semiconductor devices.

“There is still much work to be done, and this prestigious award will help us continue to drive our work forward. However, I am confident the development of plastic electronics will lead to a new-generation of exciting products coming into our everyday lives.”

Dr Richard Price from UMIP said: “Professor Song’s technology has the potential to be at the cornerstone of the plastic electronics revolution – the nanodevices are so simple, yet extremely elegant.

“Initial applications will have relatively modest functionality in comparison to today’s silicon technology, but as materials and processes continue to develop there should be no reason why high-performance products cannot be realised in the future.”

Professor Song is one of two academics from The University of Manchester to receive a Brian Mercer Feasibility Award this year.

Professor Andre Geim from The School of Physics and Astronomy also received the honour for his discovery and development of two-dimensional materials – including graphene – that are only one atom thick.

Jon Keighren | alfa
Further information:
http://www.manchester.ac.uk/eps
http://www.royalsoc.ac.uk

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>