Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mimicking how the brain recognizes street scenes

09.02.2007
First computer model based on the brain works well for artificial vision

At last, neuroscience is having an impact on computer science and artificial intelligence (AI). For the first time, scientists in Tomaso Poggio's laboratory at the McGovern Institute for Brain Research at MIT applied a computational model of how the brain processes visual information to a complex, real world task: recognizing the objects in a busy street scene. The researchers were pleasantly surprised at the power of this new approach.

"People have been talking about computers imitating the brain for a long time," said Poggio, who is also the Eugene McDermott Professor in the Department of Brain and Cognitive Sciences and the co-director of the Center for Biological and Computational Learning at MIT. "That was Alan Turing's original motivation in the 1940s. But in the last 50 years, computer science and AI have developed independently of neuroscience. Our work is biologically inspired computer science."

"We developed a model of the visual system that was meant to be useful for neuroscientists in designing and interpreting experiments, but that also could be used for computer science," said Thomas Serre, a former PhD student and now a post-doctoral researcher in Poggio's lab and lead author a paper about the street scene application in the 2007 IEEE Transactions on Pattern Analysis and Machine Intelligence. "We chose street scene recognition as an example because it has a restricted set of object categories, and it has practical social applications."

Near-term applications include surveillance and automobile driver's assistance, and eventually visual search engines, biomedical imaging analysis, robots with realistic vision. On the neuroscience end, this research is essential for designing augmented sensory prostheses, such as one that could replicate the computations carried by damaged nerves from the retina. "And once you have a good model of how the human brain works," Serre explained, "you can break it to mimic a brain disorder." One brain disorder that involves distortions in visual perception is schizophrenia, but nobody understands the neurobiological basis for those distortions.

"The versatility of the biological model turns computer vision from a trick into something really useful," said co-author Stanley Bileschi, a post-doctoral researcher in the Poggio lab. He and co-author Lior Wolf, a former post-doctoral associate who is now on the faculty of the Computer Science Department at Tel-Aviv University, are working with the MIT entrepreneur office, the Deshpande Center in the Sloan School. This center helps MIT students and professors bridge the gap between an intriguing idea or technology and a commercially viable concept.

Recognizing Scenes

The IEEE paper describes how the team "showed" the model randomly selected images so that it could "learn" to identify commonly occurring features in real-word objects, such as trees, cars, and people. In so-called supervised training sessions, the model used those features to label by category the varied examples of objects found in digital photographs of street scenes: buildings, cars, motorcycles, airplanes, faces, pedestrians, roads, skies, trees, and leaves. The photographs derive from a Street Scene Database compiled by Bileschi.

Compared to traditional computer-vision systems, the biological model was surprisingly versatile. Traditional systems are engineered for specific object classes. For instance, systems engineered to detect faces or recognize textures are poor at detecting cars. In the biological model, the same algorithm can learn to detect widely different types of objects.

To test the model, the team presented full street scenes consisting of previously unseen examples from the Street Scene Database. The model scanned the scene and, based on its supervised training, recognized the objects in the scene. The upshot is that the model learned from examples, which, according to Poggio, is a hallmark of artificial intelligence.

Modeling Object Recognition

Teaching a computer how to recognize objects has been exceedingly difficult because a computer model has two paradoxical goals. It needs to create a representation for a particular object that is very specific, such as a horse as opposed to a cow or a unicorn. At the same time the representation must be sufficiently "invariant" so as to discard meaningless changes in pose, illumination, size, position, and many other variations in appearances.

Even a child's brain handles these contradictory tasks easily in rapid object recognition. Pixel-like information enters from the retina and passes in a fast feed-forward, bottom-up sweep through the hierarchical architecture of the visual cortex. What makes the Poggio lab's model so innovative and powerful is that, computationally speaking, it mimics the brain's own hierarchy. Specifically, the "layers" within the model replicate the way neurons process input and output stimuli – according to neural recordings in physiological labs. Like the brain, the model alternates several times between computations that help build an object representation that is increasingly invariant to changes in appearances of an object in the visual field and computations that help build an object representation that is increasingly complex and specific to a given object.

The model's success validates work in physiology labs that have measured the tuning properties of neurons throughout visual cortex. By necessity, most of those experiments are made with simplistic artificial stimuli, such as gratings, bars, and line drawings that bear little resemblance to real-world images. "We put together a system that mimics as closely as possible how cortical cells respond to simple stimuli like the ones that are used in the physiology lab," said Serre. "The fact that this system seems to work on realistic street scene images is a concept proof that the activity of neurons as measured in the lab is sufficient to explain how brains can perform complex recognition tasks."

Making it More Useful

The model used in the street scene application mimics only the computations the brain uses for rapid object recognition. The lab is now elaborating the model to include the brain's feedback loops from the cognitive centers. This slower form of object recognition provides time for context and reflection, such as: if I see a car, it must be on the road not in the sky. Giving the model the ability to recognize such semantic features will empower it for broader applications, including managing seemingly insurmountable amounts of data, work tasks, or even email. The team is also working on a model for recognizing motions and actions, such as walking or talking, which could be used to filter videos for anomalous behaviors – or for smarter movie editing.

Laurie Ledeen | EurekAlert!
Further information:
http://www.mit.edu
http://web.mit.edu/mcgovern/

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
17.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>