Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Receivers key to Galileo success

27.10.2006
Europe’s navigation system requires new receiver designs to make use of the transmissions from its satellite constellation. European industry is developing and supplying receivers for the in-orbit validation of the system.

With the launch on 28 December 2005 of GIOVE-A, the first Galileo satellite, Galileo, a joint programme of the European Space Agency and the European Commission, became a reality in space.

GIOVE-A allowed Europe to secure the frequencies allocated to Galileo by the International Telecommunications Union and test the new, critical technologies needed for this future, civil satellite navigation system. The main component of the mission is, of course, the satellite built by Surrey Satellite Systems Ltd in the United Kingdom. However, the validation mission would not have been possible without several developments on the ground and, in particular, the equipment that allows reception of the signals transmitted by the satellite.

The Belgian company Septentrio Satellite Navigation NV provided three receivers for the GIOVE-A mission. These receivers supported calibration and validation of the signals transmitted by the satellite from its orbit, particularly on the historical date of 12 January 2006, which marked the first transmission of Galileo signals in space.

This pioneering task also demonstrated that Galileo and GPS do not interfere with one another and can be used together. This compatibility and interoperability anticipates the time when Galileo will be a constellation of 30 satellites, broadcasting its signals along with the 24 to 28 GPS satellites.

Once Galileo is operational, the user receivers will calculate their position with great accuracy due to the large number of satellites in the two systems. But before that, many different checks are necessary that only these prototype receivers can perform. Currently one receiver is in Guildford (United Kingdom), at the GIOVE-A satellite control centre, and the two others are in the ESA laboratories at the European Space Research and Technology Centre (ESTEC) in Noordwijk, The Netherlands. They are performing a thorough analysis of the signals transmitted by the satellite on the different frequencies allocated to Galileo.

Created in 2000, Septentrio was born out of the university community of Leuven near Brussels and its history runs parallel with that of satellite navigation in Europe. Septentrio was selected during tenders launched by ESA for various phases of its navigation programme and made the first receivers for EGNOS, the European Geostationary Navigation Overlay System that ‘filters’ GPS signals, providing an improved GPS-like signal and helping Europe to prepare for Galileo. With 50 employees, today this Belgian SME designs chips and software for receivers exclusively intended for professional applications, among them the first combined Galileo/GPS receiver.

The three receivers Septentrio provided for GIOVE-A were part of an early output from one of the two parallel Test User Segment contracts ESA awarded for the In Orbit Validation of the system. Septentrio is also providing 13 additional receivers, which are currently deployed in 13 sensor stations around the world as part of the GIOVE mission activity, and which will offer important feedback for the complex Galileo Ground Segment.

Additionally, Septentrio will deliver the Public Regulated Service (PRS) and Non-PRS Test Receivers as part of the Test User Segment, which will form the basis for system verification of the In Orbit Validation phase with four satellites to confirm the validity of the overall system design. ESA also has contracts with other receiver providers such as the Thales Avionique (France), the Alcatel Alenia Space (Italy) and the NovAtel (Canada).

Although launching satellites is of paramount importance, it is meaningless without the associated developments on the ground. The receivers are therefore closely linked to the success of Galileo, for which ESA is currently establishing the foundations.

Dominique Detain | alfa
Further information:
http://www.esa.int/esaNA/SEMFJ9PFHTE_index_0.html

More articles from Information Technology:

nachricht Quantum bugs, meet your new swatter
20.08.2018 | Rice University

nachricht Metamolds: Molding a mold
20.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>