Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCF researchers' breakthrough may help industry create more powerful computer chips

13.10.2006
Optics researchers demonstrate extreme ultraviolet light source 30 times more powerful than previously recorded attempts

A University of Central Florida research team has made a substantial inroad toward establishing extreme ultraviolet light (EUV) as a primary power source for manufacturing the next generation of computer chips.

The team, led by Martin Richardson, university trustee chair and UCF's Northrop Grumman professor of X-Ray optics, successfully demonstrated for the first time an EUV light source with 30 times the power of previous recorded attempts – enough to power the stepper machines used to reproduce detailed circuitry images onto computer chips.

The successful use of EUV light for this purpose marks a milestone in an industry-wide effort to create the most efficient and cost-effective power source for the next generation of chip production. Chips are now manufactured using longer-wavelength ultraviolet light sources.

The UCF breakthrough came as a result of a collaboration between Richardson and Powerlase Ltd., a company based in England. The company provided UCF with a powerful Starlase laser to combine with the specialized laser plasma source technology that the UCF team has developed. The unique technology combines the high conversion of laser light to EUV and effectively eliminates the neutral and charged particles that are associated with existing EUV plasma sources. If allowed to stream freely away from the source, those particles can harm the expensive optics used in EUV steppers.

The short wavelength, only 13.5 nanometers, and an uncontaminated light source are critical components for the stepper's ability to project ever-smaller circuitry onto chips.

In order to keep up with Moore's Law, a computer industry dictum written in 1965 that estimates a doubling of the number of transistors on a computer chip about every two years, significant technological changes have to be made in chip production, Richardson said.

"We must use a light source with a wavelength short enough to allow the minimum feature size on a chip to go down to possibly as low as 12 nanometers," Richardson said. The current industry standard for semiconductor production is approximately 65 nanometers. A nanometer is one-billionth of a meter; a sheet of paper is about 100,000 nanometers thick.

Richardson's EUV Photonics Laboratory, part of a broader effort on high-power laser applications that he runs, is focused on developing the EUV light source and advanced X-ray optical systems. Team members include graduate research assistant Kazu Takenoshita; graduate students Tobias Schmid, Simi George, Robert Bernath and Jose Cunado; and engineer Somak Teerawattanasook.

Research efforts have been aided by a 2004 donation of intellectual property and equipment valued in excess of $22 million to UCF's College of Optics and Photonics to support Richardson's EUV program.

Continued collaboration with industry groups such as Powerlase is allowing the work to advance exponentially, Richardson said.

"We are very excited to be able to collaborate with world-leading academic experts in the field of extreme ultraviolet sources," said Samir Ellwi, Powerlase's vice president of strategic innovations. "Our high-power, high-repetition short pulse Starlase laser is an ideal driver for the laser produced plasma EUV source."

Chad Binette | EurekAlert!
Further information:
http://www.ucf.edu

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>