Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researcher Reports JitterBugs Could Turn Your Keyboard Against You, Steal Data

09.08.2006
Researchers from the University of Pennsylvania School of Engineering and Applied Science warn against an entirely new threat to computer security: peripheral devices -- such as keyboards, mice or microphones -- which could be physically bugged in an attempt to steal data. Penn graduate student Gaurav Shah has identified a class of devices that could covertly transmit data across an existing network connection without the user's knowledge.

They are called JitterBugs, named by Shah's advisor, Penn Associate Professor Matthew Blaze, for both the way they transmit stolen data in "jittery" chunks by adding nearly imperceptible processing delays after a keystroke and for the "jitters" such a bug could inspire in anyone with secure data to safeguard.

Shah presented his findings Aug. 3 at the USENIX Security Conference in Vancouver, B.C., where it was designated the "Best Student Paper" by conference organizers. As proof of the concept, Shah and his colleagues built a functional keyboard JitterBug with little difficulty.

"This is spy stuff. Someone would need physical access to your keyboard to place a JitterBug device, but it could be quite easy to hide such a bug in plain sight among cables or even replace a keyboard with a bugged version," said Shah, a graduate student in Penn's Department of Computers and Information Science. "Although we do not have evidence that anyone has actually been using JitterBugs, our message is that if we were able to build one, so could other, less scrupulous people."

JitterBug devices are conceptually similar to keystroke loggers, such as the one famously used by the FBI to gather evidence against bookmaker Nicodemo Scarfo Jr. Unlike keystroke loggers, which would have to be physically installed into a subject's computer and then retrieved, a keyboard JitterBug only needs to be installed. The device itself sends the collected information through any interactive software application where there is a correlation between keyboard activity and network activity, such as instant messaging, SSH or remote desktop applications. The bug leaks the stolen data through short, virtually unnoticeable delays added every time the user presses a key.

Anytime the user surfs the web, sends an e-mail or instant messages someone, an implanted JitterBug could be timed to open a covert jitter channel to send stolen data. According to Shah, a JitterBug could not log and transmit every touch of the key due to limited storage space on the device, but it could be primed to record a keystroke with a particular trigger.

"For example, one could pre-program a JitterBug with the user name of the target as a trigger on the assumption that the following keystrokes would include the user's password," Shah said. "Triggers might also be more generic, perhaps programmed to detect certain typing patterns that indicate some sort of important information might follow."

JitterBugs are potentially worrisome to governments, universities or corporations with information meant to be kept confidential. One particular scenario is what Blaze refers to as a "Supply Chain Attack," in which the manufacture of computer peripherals could be compromised. Such an attack could, for example, result in a large number of such JitterBugged keyboards in the market. An attacker would only then need to wait until a target of interest acquires a bugged keyboard.

According to Shah, the channel through which the JitterBug transmits data is also the point where it could be most easily detected and countered.

While his presentation only discussed simple countermeasures to JitterBugs, Shah's initial results indicate that the use of cryptographic techniques to hide the use of encoded jitter channels might be a promising approach.

"We normally do not think of our keyboard and input devices as being something that needs be secured; however, our research shows that if people really wanted to secure a system, they would also need to make sure that these devices can be trusted," Shah said. "Unless they are particularly paranoid, however, the average person does not need to worry about spies breaking into their homes and installing JitterBugs."

Funding for this research was provided through grants received by Blaze from the National Science Foundation's Cybertrust program.

Greg Lester | EurekAlert!
Further information:
http://www.upenn.edu

More articles from Information Technology:

nachricht Robots as Tools and Partners in Rehabilitation
17.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Low bandwidth? Use more colors at once
17.08.2018 | Purdue University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>