Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

EGNOS follows the Tour de France

27.07.2006
The riders in the Tour de France were tracked again this year by EGNOS, the European navigation system that allows precise positioning via satellite. This is the third year that the European Space Agency has been involved in tests of satellite localisation during the Tour de France.
This year, the trials, conducted in partnership with the race organiser - Amaury Sport Organisation (ASO), took place over two of the tour’s stages: the eighteenth – a descent from Morzine, in the Alps, to Macon, in Bourgogne, and then the nineteenth – a time-trial between Le Creusot and Monceau-les-Mines.

During the alpine descent stage, nearly twenty cyclists agreed to wear a receiver in the back of their shirts. The devices, which now weigh only 95 grams, received data from satellites and relayed them for processing by a computer in The Netherlands.

Near the arrival line, in the technical zone of the tour, this data was presented on computer screens, allowing an appreciation of the performance of each tracked rider, notably showing their speed. For the first time it was possible to follow this many riders and see their positions in real time with an accuracy of one metre.

For the individual time-trial between Le Creusot and Montceau-les-Mines, the benefits of satellite tracking were perfectly illustrated by the race situation. Just a day ahead of the final arrival on the Champs Elysées in Paris, three riders were ranked within 30 seconds of one another in the overall standings and the yellow jersey could change wearer at any moment. The immediate visualisation offered by EGNOS showed in real time how the overall standings were being modified as the stage progressed.

A number of riders were equipped with the prototype receivers and in particular the first fifteen in the overall standing were all tracked. This made it possible to have a live view of the positions of the various riders who could hope to take the yellow jersey and therefore to watch American Floyd Landis take the yellow from Spaniard Oscar Pereiro and Germany’s Andreas Kloden grab second place from Carlos Sastre of Spain.

This demonstration was conducted by two Small/Medium Enterprises (SMEs), the Dutch company Sport-Track, which is developing the tracking software, and Trimaran of France, specialising in the production of 3D images. It was possible to see what the Tour de France might be like in the future, since space technologies could be used throughout the race and for all the riders.

These full scale tests showed that satellite positioning can bring an immediate understanding of the race. This has numerous applications, the design of which will depend on the needs of the potential users: the organisers, the teams, the media or the public.

EGNOS (European Geostationary Navigation Overlay Service) is a programme of ESA, the European Commission, and Eurocontrol. It comprises a network of around 40 ground stations distributed throughout Europe to record, adjust and improve data from the American GPS system. The modified signals are then relayed by geostationary satellites to the receivers of system users. In contrast to the 15 to 20 metre accuracy offered by GPS, the European system is accurate to better than 2 metres, and unlike GPS, a military system, the European version provides guaranteed signal quality.

EGNOS, which is currently in pre-operational service, is Europe’s first step in satellite navigation as it prepares for Galileo, which will be the first civilian navigation system, with a constellation of 30 satellites.

Dominique Detain | alfa
Further information:
http://www.esa.int/esaNA/SEMFLPBUQPE_index_0.html

More articles from Information Technology:

nachricht Robots as Tools and Partners in Rehabilitation
17.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Low bandwidth? Use more colors at once
17.08.2018 | Purdue University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>