Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flights into the mountains will become safer

26.07.2006
Pilots know well that flying in mountainous regions, be it in an aircraft or a helicopter, is both difficult and fairly dangerous. Even in good weather, when visibility is excellent, let alone when the weather is poor, in complex meteorological or conditions of poor visibility. When suddenly, unexpectedly, an aircraft finds itself in dangerous proximity to a mountain slope, there are only seconds to make a decision and then implement this decision; the speed that the obstacle comes nearer is very high. When the obstacle is another aircraft, the situation is only exacerbated. There is not always sufficient time to safely alter one’s course and steer away from the obstacle.

It would appear that there are radars, land-based services and so on – why is it that aircraft and helicopters continue to crash, especially during take off and landing at aerodromes in mountainous regions?

There are several reasons. One is the insufficiencies of existing air traffic control systems: they do not always allow flight control at low altitudes or in regions that are hard to access for observation, that is airstrips that do not appear on a radar field. Furthermore, faults are also possible on boundaries of interacting systems. It is namely this, in conditions of an ever growing intensity of air travel, that leads to the number of dangerous near misses of aircraft and helicopters with mountain slopes constantly increasing, even in conditions of good visibility.

In this situation it is quite clear that people, that is, pilots and dispatchers, need the help of machines. There must be devices that, in any weather, and this is most important, would detect that the flight is in a direct course for a mountain and which would either send a signal to the pilot or send the appropriate command to the autopilot. Alas, no individual or major corporation has to date been able to make such devices. However, a breakthrough has been noted: scientists from the Samara State Technical University and their neighbours from Ekran have recently proposed a solution to the problem. And a very realistic solution it is, too. They have already patented and are now researching a system to prevent accidental collisions of aircraft and helicopters with mountainous terrain. Experts from the International Science and Technology Centre have placed information on this development on their website, in the Promising Research section.

The essence of this solution is that the scientists were able to overcome the so-called “paradox of mountainous terrain”, where a Doppler shift of the frequency of the total signal (dependence of the frequency of the radio signal on the speed of its source) at the output of the radar is identical both in flight over a mountain slope and in flight over a flat terrain. Leaving to one side the technical and theoretical explanations of this phenomenon, we shall note only that the authors from Samara have devised a way to overcome this paradox and they have been able in one device to use two methods to determine the spatial-temporal parameters of the aircraft – the impulse radar parameter and the Doppler parameter. A special computer with specially developed software enables the analysis of these data, the detection of the mountain slope accordant to the course of the aircraft, evaluation of the steepness of the slope and the distance remaining to it. In other words – this is the recognition, to a high degree of probability, of a natural obstacle and the instantaneous warning of the pilot of the fact or the issuing of a command to alter the aircraft’s course.

“It should be said that our team, specialists from the Samara State Technical University and Ekran previously fulfilled a similar project, and successfully, too,” explains a project participant and Head of the Research and Experimental Department of Research Institute Ekran, Yuri Golubev. “We developed a system to prevent the collision of automobiles, travelling in a string, in conditions of very poor visibility, including at night in blackout conditions. We also developed radar for automobiles that informs the driver of the critical distance to the car travelling in front, with account of the absolute speed of travel, speed of convergence and the condition of the road. Of course, with aircraft the speeds are different, but we know how to make this declared system. And we already have the required experience, and the technical and theoretical run of work. The matter is now down to financing.

Andrew Vakhliaev | alfa
Further information:
http://www.istc.ru
http://tech-db.istc.ru/ISTC/sc.nsf/events/flights-into-the-mountains

More articles from Information Technology:

nachricht Earthquake researchers finalists for supercomputing prize
19.11.2018 | University of Tokyo

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>