Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Southampton launches high-performance computing cluster for engineering design

12.06.2006
A new high-performance computing (HPC) cluster at the University of Southampton has the potential to revolutionise the creation of computer code for engineering design, University project leaders announced today (9 June). The Spitfire Computer Cluster, which is based on Microsoft Windows Compute Cluster Server 2003, will enable engineers and academic researchers to more effectively perform complex computations.

The project will demonstrate how HPC clusters can support complex engineering calculations such as geometry changes to aircraft features and aeroengine components using computational fluid, and structural mechanics. It also will enable multiple problems to be linked together in multi-stage and multi-physics simulations. Potential uses of the Spitfire Computer Cluster include research into internal and external air flows around aircraft jet engines, aeroplanes and Formula 1 race cars; water flows around yacht hulls, and the behaviour of biomedical implants in the body.

The cluster is named in honour of the legendary Spitfire fighter plane designed by R.J. Mitchell in Southampton in the 1930s. The Spitfire’s engine was built by Rolls-Royce, which maintains strong research links with the University today. Future projects involving the Spitfire Computer Cluster include research in collaboration with Rolls-Royce.

Co-operation with Microsoft Corp. enabled the University to test and install Windows Compute Cluster Server 2003 and related computer equipment for the project, which will comprise two facilities. The first will focus primarily on applications for key industrial partners, while the second will provide a Windows-based, high-performance computing and data (HPC&D) platform for the broader academic community. Project leaders aim to build a community of users across a range of disciplines for the platform. Participants will explore ways to develop novel techniques for handling data and workflow from experimental tests, as well as develop and prototype new HPC frameworks such as Windows Communication Foundation, Microsoft's unified framework for rapidly building distributed applications.

Users of the Spitfire Computer Cluster will comprise a range of engineers in the University’s School of Engineering Sciences, including members of the Computational Engineering and Design Group (CEDG). Industry researchers and other academics will also be able to log in to the Cluster over virtual private networks or Web-based interfaces. Professor Andy Keane, Professor of Computational Engineering and Professor Simon Cox, Professor of Computational Methods, are leading the project for the University of Southampton.

’This Cluster will help us test out codes on realistic-scale jobs as well as engage in design improvements and research using approaches such as design of experiment methods and optimization on full-scale problems,’ Keane said. ’These new HPC tools from Microsoft will allow researchers at Southampton to save time in managing the clusters by using various Windows interfaces and integrating the HPC technology with other Microsoft products to improve ease of use. It will also enable a high level of interoperability with other servers in the lab.’

‘The School of Engineering Sciences at the University of Southampton conducts leading-edge research, and we are excited to support its work,’ said Tony Hey, corporate vice president of technical computing at Microsoft. ‘We look forward to seeing how Windows Compute Cluster Server can help speed discovery and insight for researchers at Southampton.’

Microsoft has a long-standing relationship with Southampton, particularly in the area of high-performance computing. In November 2005 the University of Southampton was chosen as one of ten Microsoft Institutes for High Performance Computing (MIHPC). The Southampton MIHPC is led by Professor Simon Cox and Dr Kenji Takeda in the School of Engineering Sciences. The University is well-known for its expertise in computational methods for design and analysis using Windows systems and Microsoft products. Southampton was also an early adopter of Web services for grid computing, and has built extensive expertise in this area.

Sarah Watts | alfa
Further information:
http://www.soton.ac.uk

More articles from Information Technology:

nachricht New Foldable Drone Flies through Narrow Holes in Rescue Missions
12.12.2018 | Universität Zürich

nachricht NIST's antenna evaluation method could help boost 5G network capacity and cut costs
11.12.2018 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>