Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared system helps pilots and drivers see in fog and at night

03.05.2006


A European research project has developed a prototype infrared-camera system that substantially enhances human visual perception in poor visibility conditions such as fog, heavy rain and at night.



The system doubled airline pilots’ ability to detect obstacles in tests simulating poor visibility, and in road tests it boosted automobile drivers’ vision up to 400 per cent. It could eventually be used aboard commercial airliners and in cars to improve safety.

As Pierre-Albert Breton of Thales Avionics, a partner in the SEE project explains, poor visibility causes flight delays, diversions and cancellations, as well as accidents. Studies also show that far more automobile accidents occur at night than during the day.


In the IST-funded SEE project, which ended in December, researchers developed two types of sensors, one detecting the short wave infrared band and another the long wave. Combining complementary data from the two cameras, the system produces a more complete image than either sensor could produce on its own.

"The challenge was to develop a low-cost technology to detect all the elements that would be visible to the naked eye in good conditions and display them to the driver or pilot on a screen," says Breton.

Since foggy weather is difficult to predict, "An important step was to develop a simulator to validate the system’s feasibility in a broad range of visibility conditions, with airline pilots using the simulator," says Breton. "We wanted to determine if pilots would accept the system."

"Feedback from pilots was very useful," says Breton. "They told us the system was very effective for detecting other aircraft on the runway. The planes are very hot, so the infrared systems pick that up very well." The system improved pilot visibility of obstacles by about 100 per cent, says Breton. "So, if a pilot could see an obstacle at 300 metres with the naked eye, the system would allow seeing it at 600 metres, giving more time to react."

In November 2001, a passenger flight crashed into a forest on a night landing approach into Zurich, killing 24. Could the SEE system have prevented it? Maybe, says Breton. "It allows the pilot to see the landscape and detect obstacles earlier, but the system is not magic. Simulation showed it to be less effective in landings. Due to the speed of an approach, a visibility gain of 50 per cent or even 100 per cent is not as significant as it is in runway taxiing," he says.

SEE researchers also conducted tests on cars driven in real, foggy conditions, says Breton. The dual cameras, weighing 15 kilos, were mounted on the car roof, with an electronic system for piloting and recording in the trunk. The system improved human visual perception by at least fourfold, says Breton. "It was really effective at detecting a person or an animal on the side of the road." This could help drivers see pedestrians or cyclists in poor visibility conditions, a major source of accidents, he says.

BMW, one of the project’s eight partners, is exploring low-cost applications of the system to improve automotive safety. "This would certainly be a marketable feature," says Breton. However, he says, the current system’s cost of 5,000 euros – a cockpit system would cost far more – makes it impractical. Work is planned to bring down the cost.

For aviation, the next step is to use pilot feedback in developing a complete cockpit simulator, for more extensive tests with pilots, says Breton. He estimates it will be at least another ten years before the system could be installed on commercial airliners. "There is still a lot of testing and refinement to be done."

Jernett Karensen | alfa
Further information:
http://istresults.cordis.europa.eu.int/index.cfm/section/news/tpl/article/ID/81685/BrowsingType/Features

More articles from Information Technology:

nachricht Robots as Tools and Partners in Rehabilitation
17.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Low bandwidth? Use more colors at once
17.08.2018 | Purdue University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>