Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Program to Halt Pandemics Installed in Georgia

24.04.2006


The program has been used in DeKalb County and will be installed throughout Georgia. The program is also slated to be used in 35 other states.



Your city has 48 hours to vaccinate every man, woman and child to prevent a dangerous pandemic. Where do you put the clinics, how many health care workers will you need and how do you get 2 million people to a finite number of emergency clinics?

The logistics of handling all those panicked people, health care workers, vaccinations, clinics and forms are dizzying. And while health departments have plans in place, it’s very difficult to know how well those plans will perform when time is critical and the minutes needed to move patients to a large clinic or for a frightened patient to fill out a form could mean life or death for thousands or millions of people.


Now researchers at Georgia Tech have developed a computer program, based on a clinical model created by the Centers for Disease Control and Prevention (CDC), to help U.S. state, city and county health care departments create and test more efficient plans for treating infectious illness, whether it’s a natural or man-made outbreak.

The program, called RealOpt and created by Dr. Eva Lee, an associate professor of industrial and systems engineering at the Georgia Institute of Technology, will be installed over the next few months at health departments across the state of Georgia and health departments in 35 other states have plans to test the program. While the program is still in the testing phase, it will soon be available free to any government health department that requests it from Georgia Tech.

RealOpt has been tested by the DeKalb County Health Department in Georgia, and the county ran a very successful anthrax drill last year. Lee used RealOpt to help DeKalb test and improve its existing bioterror preparedness plan.

RealOpt takes the numerous variables associated with a health care department’s treatment of a very large group of people, and through large-scale simulation and optimization (even considering variables such as panic and language barriers), pinpoints the most efficient way to move patients to and through a facility. Using the program, a health care department can determine the best location for emergency clinics based on population density and road accessibility, the most efficient facility layout, the number of health care professionals needed in certain areas, the number of vaccinations needed and the time it will take to treat patients.

RealOpt can be used to prepare for a possible outbreak, as well as for emergency re-assignment of health care workers within the clinic and between clinics during an actual outbreak. By being able to assess preparedness, health departments will have more a precise estimate of the resources and funds needed to treat communities before an actual outbreak.

In addition to its role in planning, one of RealOpt’s significant advantages is its ability to process data in real time as the emergency treatment occurs. As patient flows fluctuate, the program can determine how to reallocate the facility’s resources in a fraction of a second, sending more doctors or nurses to one station or more attendants to the paperwork processing area.

“Rapid analysis of scenarios not only allows for large-scale planning and preparedness, but also allows on-the-spot optimization to maintain the best resource allocation over time,” Lee said. “As patients enter and progress through the clinic we can observe the flow and dynamically adjust the configuration as needed. This is also critical for response to catastrophic events, for example, if one treatment site collapses.”

RealOpt also includes an automated facility-layout drawing tool that allows health care workers to design and analyze their own clinic layout in response to various emergency situations, such as anthrax, smallpox, flu pandemic or natural disaster.

Lee continues to add to RealOpt’s capabilities, and is currently adding a disease propagation component to the system. The addition would help to analyze the disease’s spread within treatment sites and possible ways to halt or minimize the spread. It will also determine how to redirect patients should one center need to be quarantined or closed to prevent further spread of a disease.

The Georgia Institute of Technology is one of the nation’s premiere research universities. Ranked ninth among U.S. News & World Report’s top public universities, Georgia Tech educates more than 17,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation’s top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2004-2005 academic year, Georgia Tech reached $357 million in new research award funding. The Institute also maintains an international presence with campuses in France and Singapore and partnerships throughout the world.

Megan McRainey | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Information Technology:

nachricht Interactive software tool makes complex mold design simple
16.08.2018 | Institute of Science and Technology Austria

nachricht Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project
16.08.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

3D inks that can be erased selectively

16.08.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>