Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is your pet infected with a computer virus?

16.03.2006


Digital vermin poses a real threat to RFID tags


Is your pet infected with a computer virus?

Has your dog or cat contracted a computer virus? It’s not impossible. These days, large numbers of pets and livestock have a small chip implanted under the skin so that they can be identified if they stray or turn out to be infected with a disease. As these chips only have a limited memory capacity, it was widely assumed that they could not become infected with a computer virus. However, researchers at VU Amsterdam have now discovered that this is a real possibility. Fortunately they have also come up with a number of adequate countermeasures.

The chips in question are called Radio Frequency Identification Tags, or RFID tags. These are small, relatively cheap microchips, which can be used to tag supermarket products, for example. They can also be implanted into pets or livestock. The same chips are used in public transport chip cards, ski passes or on baggage labels at airports.



Thanks to these tags, we will soon be able to do our shopping without having to queue at the tills. An RFID scanner placed at the exit will transmit a radio wave that will be received by all the RFID tags in your shopping trolley. The tags identify themselves, the scanner registers the products you have bought and the total bill can be debited directly from your bank account. Walmart, the largest supermarket chain in the world, expects to make a total switch to products with RFID chips within the next few years.

But these tags are apparently more vulnerable than was first thought. PhD candidate Melanie Rieback and her supervisor Prof. Andrew Tanenbaum have found a way of placing a computer virus onto a RFID tag. This was previously considered impossible on account of the limited memory capacity of the tags. Melanie Rieback will be giving a demonstration of her discovery on Wednesday 15 March at the annual IEEE Conference on Pervasive Computing and Communications in Pisa.

Digital plague

These chips may be small, but just one infected RFID tag is capable of disrupting an entire system with disastrous consequences. Take, for example, the airport at Las Vegas, which handles two million items of luggage per month. As from May 2006, RFID tags will be attached to cases to speed up the baggage handling process. If someone intentionally attaches an infected RFID tag to his case, the entire system will be thrown into disarray. As soon as the case is scanned, the infected tag will be able to invade the airport’s central baggage database and all cases subsequently checked in will also become infected. On arrival at other airports, these cases will be scanned again and within 24 hours, hundreds of airports throughout the world could be infected. The perfect solution for smugglers and terrorists wanting to send suspicious luggage across the world without being noticed.

Countermeasures

Fortunately, the threat of infection can be countered using standard measures. Rieback stresses that developers must check their RFID systems, and implement safety procedures and secure programme technology. Although these countermeasures will curb the threat posed by RFID viruses, extra time, money and effort will need to be spent on implementing them. It is therefore imperative that RFID system developers and users check the security of their systems now, before they are put to large-scale use.

Tanja Terpstra | alfa
Further information:
http://www.rfidvirus.org

More articles from Information Technology:

nachricht Robots as Tools and Partners in Rehabilitation
17.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Low bandwidth? Use more colors at once
17.08.2018 | Purdue University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>