Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer interface design starts with respecting the real world

20.02.2006


Protoypes can help designers meet user needs



Before Jeff Hawkins ever started making the original Palm Pilot digital organizer he prototyped it as a block of wood with fake buttons and a paper screen. To this day the Palm Pilot is a successful design of human and computer interaction that remains all too rare, says Stanford computer science Assistant Professor Scott Klemmer. Every time a person uses a computer--a desktop, a cell phone or even a chip-enabled coffee maker--the interaction is specified by an interface designer. These interfaces often fall short or even fail, Klemmer says, because designers overlook the physical nature of human beings and the real world. As computers become ubiquitous, designers must take everyday users into account from the beginning, prototyping extensively to stay attuned human needs and capabilities.

"In naïve techno-utopianism, we just put everything into the land of bits without really thinking about it," says Klemmer, who will speak Feb. 18 at the American Association for the Advancement of Science annual meeting in St. Louis. "We’ve lost a lot of the things that we had in the physical world--a lot of the intuitions, a lot of the fidelity of control that our bodies offer."


Traditional computer interfaces often hinder the way people work, learn, play and interact, Klemmer says. Virtual interactions should supplement--but not supplant--physical ones. At the conference, Klemmer will offer designers guidance including a set of principles to keep computer interfaces in physical perspective. He hopes the principles and closer attention to prototyping as a design methodology will help future computer interface designs deliver the benefits of information technology without sacrificing the inherent advantages of the physical world.

Design principles

Klemmer’s design principles address the shortcomings of traditional digital design approaches in accounting for the physical and social nature of human beings.

One key principle, for example, is that there is a limit to how much one should make product design virtual rather than physical. Simulations can speed the process, but designers like Hawkins gain invaluable feedback from building and critiquing physical prototypes. Seeking the happiest medium between physical and virtual design methods, Klemmer and doctoral candidate Bjoern Hartmann have developed a consumer electronics rapid prototyping system called d.Tools that allows users to design a gadget’s hardware and software in concert. To build an MP3 player, for example, a designer would assemble d.Tools hardware components such as "play" and "pause" buttons, a volume control, speakers and an LCD screen into a physical device. The d.Tools software, which automatically recognizes the hardware components, would bring the physical device "to life" by letting designers assign capabilities to the controls. The designers would also use d.Tools to create the interface between the user and the device.

Another principle is recognizing that the human body is a well-engineered machine fully capable of managing rich and intricate interactions with the world. Keyboards, mice or buttons might not provide the best interactions to meet a user’s needs. All the word processors in the world haven’t, for example, made the myth of the "paperless office" come true because for tasks like taking notes or writing down ideas, people often prefer working with pliable, reliable paper, Klemmer says. Meanwhile the popular video game Dance Dance Revolution, which players control by dancing on an electronic platform, is a huge success because it preserves the physical joy of dancing.

Designers should also keep in mind that in physical environments, people can quickly observe useful information about each other, a principle Klemmer calls "visibility." Walk around an auto body shop or an art studio, for example, and it is easy to see what everyone is working on and how that work is progressing. So far computer interfaces have, if anything, reduced visibility. Prototypes for feedback

The design principles will have the greatest impact if they are paired with the practice of prototyping, Klemmer says. Rather than trying to devise an entire digital product or experience in the lab before testing it with users, designers should frequently test mockups, dummies, and other limited versions of the project to gather specific feedback for continuous improvement.

The response of users to different kinds of prototypes can answer crucial questions early in development such as does the product look like users want it to? Does it work like users want it to? And, does it fit in well with the experience they want to have when they use it?

The need to design interfaces that can respect but augment the physical nature of humanity is becoming more acute as computers begin to greatly outnumber people. "Having thousands of keyboards per person is not a realistic solution," Klemmer says. "The successful interfaces will weave themselves into the fabric of everyday life." That is, computing will only seem natural when it is designed to be part of the natural world.

David Orenstein | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>