Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to help computers recognize patterns

25.01.2006


Researchers at Ohio State University have found a way to boost the development of pattern recognition software by taking a different approach from that used by most experts in the field.



This work may impact research in areas as diverse as genetics, economics, climate modeling, and neuroscience.

Aleix Martinez, assistant professor of electrical and computer engineering at Ohio State, explained what all these areas of research have in common: pattern recognition.


He designs computer algorithms to replicate human vision, so he studies the patterns in shape and color that help us recognize objects, from apples to friendly faces. But much of today’s research in other areas comes down to finding patterns in data -- identifying the common factors among people who develop a certain disease, for example.

In fact, the majority of pattern recognition algorithms in science and engineering today are derived from the same basic equation and employ the same methods, collectively called linear feature extraction, Martinez said.

But the typical methods don’t always give researchers the answers they want. That’s why Martinez has developed a fast and easy test to find out in advance which algorithms are best in a particular circumstance.

"You can spend hours or weeks exploring a particular method, just to find out that it doesn’t work," he said. "Or you could use our test and find out right away if you shouldn’t waste your time with a particular approach."

The research grew out of the frustration that Martinez and his colleagues felt in the university’s Computational Biology and Cognitive Science Laboratory, when linear algorithms worked well in some applications, but not others.

In the journal IEEE Transactions on Pattern Analysis and Machine Intelligence, he and doctoral student Manil Zhu described the test they developed, which rates how well a particular pattern recognition algorithm will work for a given application.

Along the way, they discovered what happens to scientific data when researchers use a less-than-ideal algorithm: They don’t necessarily get the wrong answer, but they do get unnecessary information along with the answer, which adds to the problem.

He gave an example.

"Let’s say you are trying to understand why some patients have a disease. And you have certain variables, which could be the type of food they eat, what they drink, amount of exercise they take, and where they live. And you want to find out which variables are most important to their developing that disease. You may run an algorithm and find that two variables -- say, the amount of exercise and where they live -- most influence whether they get the disease. But it may turn out that one of those variables is not necessary. So your answer isn’t totally wrong, but a smaller set of variables would have worked better," he said. "The problem is that such errors may contribute to the incorrect classification of future observations."

Martinez and Zhu tested machine vision algorithms using two databases, one of objects such as apples and pears, and another database of faces with different expressions. The two tasks -- sorting objects and identifying expressions -- are sufficiently different that an algorithm could potentially be good at doing one but not at the other.

The test rates algorithms on a scale from zero to one. The closer the score is to zero, the better the algorithm.

The test worked: An algorithm that received a score of 0.2 for sorting faces was right 98 percent of the time. That same algorithm scored 0.34 for sorting objects, and was right only 70 percent of the time when performing that task. Another algorithm scored 0.68 and sorted objects correctly only 33 percent of the time.

"So a score like 0.68 means ’don’t waste your time,’" Martinez said. "You don’t have to go to the trouble to run it and find out that it’s wrong two-thirds of the time."

He hopes that researchers across a broad range of disciplines will try out this new test. His team has already started using it to optimize the algorithms they use to study language and cancer genetics.

This work was sponsored by the National Institutes of Health.

Aleix Martinez | EurekAlert!
Further information:
http://www.osu.edu

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

Molecular switch detects metals in the environment

15.08.2018 | Materials Sciences

Seeing on the Quick: New Insights into Active Vision in the Brain

15.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>