Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most Powerful Graphics Computing

11.11.2005


Highlight during SC|05 in Seattle: Fraunhofer Visualization Software on an IBM Cell Cluster Prototyp.



One highlight of the International Conference on High Performance Computing SC|05 in Seattle will be the visualization software PV-4D of the Fraunhofer Institute for Industrial Mathematics ITWM. The software has been installed on a prototype of an IBM cell blade cluster and will be presented to a large public for the first time. A successful test run was performed during the Fraunhofer Annual Meeting in Magdeburg, Germany on October 19 this year.

The visualization and analysis of extremely large amounts of data from the fields of scientific computing, image-rendering methods in medical technology, or oil exploration can be represented by easily understandable realtime animations thanks to PV-4D. The cell processor is now rendering things even faster: it is equipped with nine cores and currently represents the chip with the highest performance available for the mass market.


The professional visualization environment has been developed at the Competence Center High Performance Computing of the ITWM by Dr. Carsten Lojewski and his team and has been awarded the Joseph-von-Fraunhofer-Preis 2005. PV-4D is a pure software solution and explicitly works without the support of graphic cards. Time-critical functions use the vector units and the multi-pipes of modern processors for parallelization. The software works especially effectively if it is running on a cluster system. The network support (Gbit-Ethernet, Myrinet, Infiniband) is directly integrated into the parallel software, thus guaranteeing minimum latencies and large bandwidths.

A further central element of PV-4D is the decentralized software control. A server process is responsible for the computation of images and allows for the integration of simple viewers, which are installed on a laptop within the office network or on front-end computers of a virtual reality environment. The image composi-tion, which is usually done by special hardware, is also completely realized within the software.

The software is the tool with the highest performance available worldwide for a fast and interactive representation of gigantic amounts of data. The performance of the current cluster systems even exceeds the strongest special graphics computers, thus al-lowing for the interactive visualization of more than one terabyte of data. This performance is also convincing industrial partners, such as DaimlerChrysler, Shell AG, or the Berkeley Labs in California.

During the Supercomputing in Seattle (November 12-18), the new PV-4D Ray Tracing Kernel will be shown. It allows for the first time volume rendering of complex seismic data in real time. This opens up a new world of interaction for geophysicists, facilitating the analysis of data for the exploration of new oil wells.

The current implementation on the cell processor exclusively uses the vector units of the individual SPEs for the so-called SIMD-Shaft Ray Tracing; the available PEs are responsible for the parallel or-ganization of data. In such a way, 128 parallel rays can be com-puted at first-order coherence on each cell processor, and at sec-ond-order coherence 32 parallel rays with direct hardware sup-port. At the IBM booth in Seattle, 16 cell processors will be com-bined to form of a high-performance ray-tracing cluster.

Ilka Blauth | alfa
Further information:
http://www.fraunhofer.de/press

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Rapid water formation in diffuse interstellar clouds

25.06.2018 | Physics and Astronomy

Using tree-fall patterns to calculate tornado wind speed

25.06.2018 | Earth Sciences

'Stealth' material hides hot objects from infrared eyes

25.06.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>