Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanotech memory company poised to profit in billion dollar markets

21.06.2005


“Nanomech is a new non-volatile memory technology which is completely different to the existing one,” explains Dr Mike Beunder, CEO of Cavendish Kinetics. “The existing technology involves storing charge whereas ours operates mechanically like a switch.”



Cavendish Kinetics develops nanotechnology-based non-volatile memory. To support this activity, Cavendish Kinetics has developed its own patent-protected range of Nanomech™ embedded non-volatile memory products.

Nanomech™, using standard CMOS process technology, enables the implementation of unique memory storage devices with ultra low-power, high speed read/write characteristics that function fully up to 200°C and are completely insensitive to radiation. Compared to current technology, Nanomech™ storage devices offer 200 times better write performance while consuming 50 to 100 times less power.


Cavendish Kinetics currently offers three embedded non-volatile memory products, an electrically programmable Fuse (eFuse), an embedded One-Time-Programmable (eOTP) memory product, and an embedded multi-time programmable (eMTP) memory product.

“Cavendish Kinetics is a spin-off from Cavendish Laboratory at Cambridge University,” mentions Beunder, “and the company’s founder and CTO, Dr Charles Smith, is still a Reader at the Laboratory.” When Smith established Cavendish Kinetics in 1994, Cambridge University transferred ownership of its nanotech non-volatile memory patents to the company in exchange for stock.

Beunder believes the target market for the new memory technology to be worth $4.75bn and will grow to $6bn by 2008. Potential applications for the Nanomech™ storage devices include micro-controllers, RFID and smartcards used in the mobile, automotive, space, defence and medical sectors. To help enter these markets, the company recently opened a US sales office in Silicon Valley.

The company is currently seeking about $10m in second round VC investment in order to establish a worldwide marketing and sales organisation as well as to finance the further development of eOTP and eMTP. Attracting new investment is a key activity for Beunder and he recently seized the opportunity to present his company’s business plan to investors at the European Tech Investment Forum in London, one of Europe’s leading events for ICT entrepreneurs and investors.

Cavendish Kinetics is currently working on the 4.68m euro PROMENADE IST project, which involves seven partners including Bosch and IMEC. The project is developing a process management and design system for microsystem technologies. The computer system will enable process engineers to simulate and optimise silicon-based thin film processes and help designers to understand technological constraints when designing microsystems for manufacture. Cavendish Kinetics is responsible for integrating its in-house management and tracking system for CMOS process developments into the PROMENADE system.

The company was also involved in the EUREKA-funded MESCI-I project, which integrated MEMS nanoswitches in mainstream CMOS processes and helped to advance the firm’s Nanomech technology. “The MESCI-I project was regarded as so successful,” announces Beunder proudly, “that we have just won the LYNX Award for 2005 from the EUREKA programme.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Researchers build transistor-like gate for quantum information processing -- with qudits
17.07.2019 | Purdue University

nachricht New DFG Research Group "Metrology for THz Communications"
17.07.2019 | Technische Universität Braunschweig

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>