Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Faster handoff between Wi-Fi networks promises near-seamless 802.11 roaming

14.04.2005


Road warriors may no longer have to stay put in an airport lounge or Starbucks to access the high-speed Internet via an 802.11 Wi-Fi network. Thanks to software developed by two computer scientists at the University of California, San Diego, the time it takes to hand off from one Wi-Fi wireless network to the next can be dramatically shortened -- overcoming a major obstacle in Wi-Fi roaming.



Jacobs School of Engineering professor Stefan Savage and graduate student Ishwar Ramani have a patent pending on the basic invention behind SyncScan, a process to achieve practical, fast handoff for 802.11 infrastructure networks. Their study will be published in the Proceedings of the IEEE InfoCom 2005.

"Wi-Fi offers tremendous speeds if you stay in one place or at least within 100 meters of the same access point," said Savage, an assistant professor in the Computer Science and Engineering department and academic participant in the California Institute for


Telecommunications and Information Technology. "SyncScan is a handoff algorithm which can cut the time it takes to switch from one Wi-Fi access point to another by a factor of a hundred over existing solutions. This is a requirement for demanding applications like Voice over Wi-Fi [VoWi-Fi], where even short interruptions can disrupt the illusion of continuous connectivity." Savage notes that SyncScan also allows mobile devices to make better handoff decisions and therefore improve signal quality overall.

At present, Wi-Fi handoffs are cumbersome and time-consuming. Not until the access-point signal weakens substantially and begins losing packets of data does a Wi-Fi-enabled laptop, PDA or mobile phone begin scanning for a stronger signal. At that point, it broadcasts requests on all channels to find nearby access points. The result: a delay of up to one second, during which any packets may be lost. That may not seem inordinate when downloading data, but it can be unacceptable if the user is trying to listen to Internet radio, watch a streaming movie trailer or talk on a Wi-Fi phone.

"Today most Wi-Fi users accept being tethered to a single location in exchange for the broadband speeds that Wi-Fi offers," said Ph.D. candidate Ramani. "But increasingly they want to be able to make Voice of IP (VoIP)phone calls or stream multimedia while commuting or on the move, and a one-second disruption can seem like an eternity."

The SyncScan solution proposed by Savage and Ramani is a method to continuously monitor the proximity of nearby 802.11 access points. Instead of looking for surrounding access points just when the current signal is running low, a Wi-Fi device with SyncScan regularly checks signal strengths nearby - but only for very short periods of time. These times are picked to precisely coincide with regularly scheduled "beacon" messages sent by all standard Wi-Fi access points. The process eliminates the current need to start from scratch when looking for a stronger signal, and replaces the long scanning delay with many small delays that are imperceptible to the user.

To test their SyncScan algorithm, the researchers used a laptop running a voice application while walking between two areas of the UCSD campus served by neighboring Wi-Fi access points. "We used a popular VoIP called Skype which uses UDP [user datagram protocol] packets exchanged between two clients for voice communication," explained Savage. "Using SyncScan with a measurement interval of 500 millseconds, handoff delay was virtually imperceptible - roughly 5 milliseconds. Repeating the tests without SyncScan, the average handoff time was 450 milliseconds, but ranging up to a full second in some cases."

The researchers also observed a big difference in the number of lost data packets that can contribute to loss of data or voice dropout. Zero packets were dropped using the SyncScan algorithm in the UCSD tests, compared to substantial packet losses using current technology. "That is because the overhead of scanning for nearby base stations when the current signal weakens is routinely over 250 milliseconds, during which incoming packets are dropped," said Ramani. "We expect that the same improvements can be achieved on most Wi-Fi devices and using most applications, not just voice." SyncScan is also economical, because it can be deployed incrementally and implemented in software without requiring any changes to the 802.11 standard or any hardware upgrades.

Just over 110,000 VoWi-Fi handsets were sold in 2004, mostly in Japan. Vonage is set to roll it out commercially in the U.S. later this spring as an add-on to its popular VoIP service, and sales of dual-use phones incorporating both cellular and VoWi-Fi could reach $3 billion by 2009, according to a study by Infonetics Research.

Doug Ramsey | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Information Technology:

nachricht Shaping nanoparticles for improved quantum information technology
15.10.2019 | DOE/Argonne National Laboratory

nachricht Controlling superconducting regions within an exotic metal
11.10.2019 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>