Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barcode for explosives

04.03.2005


Experts encounter a serious problem when studying the crime scene after an explosion. They can establish to a high degree of probability the type and power of the device used by terrorists and with what explosive substance it was filled with. However, they are usually unable to answer the most important question as to where and when the explosive itself was made: TNT is still TNT, regardless of the where and when it was produced.



Specialists from the Semenov Institute of Chemical Physics and their colleagues from several defense enterprises have developed special encoding additives. If these additives are introduced to the composition of the explosive, the site of the explosion will leave a kind of fingerprint, with which the explosive could be identified and the path of its legal movements could be traced; this would give the investigation into an incident of this kind a thread to uncover the supply channels of the terrorists. This most important work was fulfilled by the researchers in the framework of ISTC Project # 1292.

It is very difficult to make such encoding additives specifically for explosives; the requirements are too strict. On one hand they have to be completely harmless to the product (the explosive) and to the environment in their own right. On the other hand the explosion must not damage the encoding additive. And of course they all have to be individual, to ensure the reliability of the identification process. No dirt or impurities should be able to hinder the recognition of markers or to confuse them.


However, these complications proved no problem to the scientists from the Institute of Chemical Physics. The encoding additives they have proposed to introduce to the composition of explosives do not damage the explosive and are themselves undamaged after an explosion and have no adverse environmental effects.

“These are tiny grains of aluminum alloy, comprised of rare-earth elements,” informs Project Manager and Head of Laboratory Yuri Krasevich. “There are very few such elements in nature and they are dispersed throughout the Earth’s Crust. Therefore, in whatever quantities they may sensibly be found in special, pre-set combinations, they are not met in either natural or manmade objects. However it will be possible to find them at the site of an explosion; at least if they had been initially introduced to the composition of the explosive.”

Naturally, it is not so simple to identify such “fingerprints” as it is to read information from a barcode in a supermarket. Here the task in fact involves a highly complex chemical analysis of microscopic samples, to discover how many rare-earth elements there are in the sample, what exactly they are and in what combination. And yet the researchers have coped with this most difficult of tasks.

For the analytical method the project authors proposed the use of laser-emission analysis of the element composition, using equipment developed by NPO Typhoon. The scientists also developed the necessary methodology and highly complex software for statistical analysis.

The first tests have already been conducted. Using a special bench in an explosion chamber the properties of an “encoded” explosive were studied and the scientists are confident that it explodes “as it should” – no worse than the explosive in its initial state. The same can be said for the “fingerprints” it leaves, which enable identification to the same level of reliability as a product that is identified by its barcode.

Olga Myznikova | alfa
Further information:
http://www.istc.ru

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>