Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surf’s up: Professor using models to predict huge waves

16.02.2005


If you’re a ship captain and there might be 50-foot waves headed your way, you’d appreciate some information about them, right? That’s the idea behind a wave model system a Texas A&M University at Galveston professor has developed. His detailed wave prediction system is currently in use in the Gulf of Mexico and the Gulf of Maine.



Vijay Panchang, head of the Department of Maritime Systems Engineering, doesn’t make waves - he predicts what they’ll do, when they’ll do it and how high they’ll get. Using data provided daily from NOAA and his own complex mathematical models, Panchang and research engineer Doncheng Li provide daily wave model predictions for much of the Texas coast, the Gulf of Mexico and the Gulf of Maine. Their simulations, updated every 12 hours, provide a forecast for two days ahead. "The models we provide are based on very detailed information, such as seabed topography, offshore wave conditions, wind speed and direction and other factors," Panchang explains.

"It’s useful information for anyone in coastal waters. Texas has a huge coastline, and Maine has more than 3,000 miles of coast. Recreational and fishing boats, cruise ships, commercial ships, and others can use this information. Coastal wave information can also be used to predict sediment transport and for engineering design." Because the models use wind data, tsunamis that are created by undersea earthquakes can’t be predicted. But that’s not to say his modeling system doesn’t come up with some big waves. His wave model predicted big waves in November 2003 in the Gulf of Maine, and it was accurate - waves as high as 30 feet were recorded during one storm even in coastal regions.


Last summer during Hurricane Ivan, a buoy located 60 miles south of the Alabama coast recorded a whopping 60-foot wave. "There may have been higher waves because right after recording the 60- foot wave, the buoy snapped and stopped functioning," he says. "Also, the 50-foot wave is an average measure of the sea-state, and the highest waves could be nearly twice as big. Waves during storms can be quite high, and 50-foot waves are not uncommon," Panchang reports. He notes that during a storm in 1995 off the Halifax coast, the captain of the Queen Elizabeth II reported a monstrous 95-foot wave.

Panchang is also developing a similar wave model prediction system for the Prince William Sound Oil Recovery Institute in the Alaska port of Valdez, site of the Exxon Valdez oil spill. That wave model system should be online by next year.

Anyone on the water wants to know how high the waves will be when they out at sea," he says. "We provide a valuable service to those on ships and boats who want to know what the wave conditions will be like in the next 24 hours."

Keith Randall | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Information Technology:

nachricht 'Building up' stretchable electronics to be as multipurpose as your smartphone
14.08.2018 | University of California - San Diego

nachricht New interactive machine learning tool makes car designs more aerodynamic
14.08.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>