Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer scientists develop wireless system to monitor volcanoes

23.09.2004


Seismologists, Ecuadorian officials, area residents could benefit from improved data



A rumbling South American volcano has gone wireless: Computer scientists at Harvard University have teamed up with seismologists at the University of New Hampshire and University of North Carolina to fit an Ecuadorian peak with a wireless array to monitor volcanic activity. The sensors should help researchers, officials, and local residents understand and plan for eruptions of Tungarahua, one of Ecuador’s most active volcanoes in recent years.

The researchers installed the wireless network on Tungarahua and captured 54 hours of data during a recent trip to the 5,016-meter mountain. The wireless system could eventually replace the wired sensors now used on Tungarahua and many other volcanoes. "Systems used to monitor volcanic activity rapidly capture huge amounts of data," says Matthew D. Welsh, assistant professor of computer science in the Division of Engineering and Applied Sciences at Harvard. "The wired systems now used to monitor Tungarahua and other volcanoes are expensive, quickly exhaust batteries, and force people to trek up the slopes of a volcano every few days to retrieve the data that has accumulated."


Welsh and his colleagues fitted Tungarahua with a network of five tiny, low-power wireless sensor nodes equipped with a special microphone to monitor infrasonic (low-frequency acoustic) signals emitted during eruptions. Each runs on two AA batteries, is sealed in a waterproof container the size of a soap dish, and transmits data automatically to an observation post more than 5 miles away down the mountain.

Often rumbling and spewing ash and hot gas numerous times each day, Tungarahua ranks among Ecuador’s most threatening volcanoes. In 1999 the entire town of Banos, in Tungarahua’s shadow, was evacuated for several months after observations led scientists and government officials to believe, incorrectly, that a major eruption was imminent.

Wireless sensor networks represent a new kind of computing platform. They consist of small, low-power, wireless devices merging sensors with a small amount of computing power and storage. Sensor networks have been explored for applications such as habitat monitoring, medical care, and seismic analysis of structures; this effort is believed to be the first such application of wireless sensor networks to volcanic monitoring.

"This is a proof-of-concept that wired systems for monitoring volcanic activity can be replaced with wireless arrays," Welsh says. "Specifically, our work indicates that wireless systems can be used to follow long-term trends in volcanic activity that are of great interest to researchers. This long-term observation entails copious amounts of data that is difficult to obtain with wired monitoring systems. Seismologists are very excited about the possibilities here."

Seismologists and volcanologists use both seismic and infrasonic signals to monitor volcanic activity. Seismometers provide information on seismic waves propagating through the earth, but are poorly suited to discriminating eruptions from other activity such as earthquakes or mining operations. Infrasound waves, with a wavelength of less than 20 hertz, are characteristic of explosions and provide additional information not available with seismic monitoring.

Welsh and his colleagues now plan to develop a wireless seismometer to augment their infrasound array. The researchers also intend to deploy a larger network of some 20 nodes on Tungarahua, and may place wireless sensor networks on several other active volcanoes.

Welsh’s colleagues on this project are Geoff Werner-Allen at Harvard, Jeff Johnson at the University of New Hampshire, Mario Ruiz at the University of North Carolina and the Instituto Geofísico of the Escuela Politecnica Nacional in Ecuador, and Jonathan Lees at the University of North Carolina.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>