Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computerized fingerprint matching is highly accurate

16.07.2004


Computerized fingerprint


Computerized systems that automatically match fingerprints have become so sophisticated that the best of them are accurate more than 99 percent of the time, according to the most comprehensive known study of the systems ever conducted.

Computer scientists at the Commerce Department’s National Institute of Standards and Technology (NIST) tested 34 commercially available systems provided by 18 companies from around the world. NIST conducted the testing to evaluate the accuracy of fingerprint matching for identification and verification systems.

While law enforcement agencies long have employed automated fingerprint matching devices, they are used increasingly in biometric systems to make national borders more secure. NIST conducted the study to fulfill requirements of the USA PATRIOT Act and the Enhanced Border Security and Visa Entry Reform Act.



The test used operational fingerprints from a variety of U.S. and state government sources. A total of 48,105 sets of fingerprints from 25,309 people, with a total of 393,370 distinct fingerprint images, were used to enable thorough testing.

The most accurate systems were from NEC of Japan, SAGEM of France and Cogent, an American company. The performance of these three systems was comparable. The performance varied depending on how many fingerprints from a given individual were being matched. The best system was accurate 98.6 percent of the time on single-finger tests, 99.6 percent of the time on two-finger tests, and 99.9 percent of the time for tests involving four or more fingers. These accuracies were obtained for a false positive rate of 0.01 percent.

Researchers found that the number of fingers used and fingerprint quality affected the accuracy of the systems. Prints from additional fingers greatly improved accuracy, and the greatest gains were seen when graduating from a single finger to two fingers.

The Justice Management Division of the U.S. Department of Justice funded the study in connection with its efforts to integrate the fingerprint systems operated by the Federal Bureau of Investigation and the Department of Homeland Security.

Philip Bulman | EurekAlert!
Further information:
http://www.nist.gov
http://fpvte.nist.gov

More articles from Information Technology:

nachricht Bursting the clouds for better communication
18.10.2018 | Université de Genève

nachricht Research on light-matter interaction could improve electronic and optoelectronic devices
11.10.2018 | Rensselaer Polytechnic Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>