Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Paper-Thin Compound-Eye Camera

09.07.2004


The focal length of a lens means that a camera has to have a certain thickness - or so we might think. Insect eyes show that this need not be the case: A camera chip based on the compound-eye principle can be used for person recognition and is as thin as paper.

If people were insects, books on optics would certainly look different. The camera illustrated as the technical equivalent next to a cross-section of the eye with just one lens, one iris and one retina would not be of the conventional type. A compound camera would have many hundreds of individual eyes. Each light-sensitive unit, consisting of a lens and a photocell, would capture a narrow segment of the environment. All the images together form the complete picture. An insect’s compound eye will never achieve a particularly high optical resolution, but the principle according to which it registers images does possess some advantages, and if these were incorporated in a camera it would be very flat and could cover a wide field of view.

It was precisely these advantages which inspired research scientists at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF to develop their ultra-flat camera system. “Our latest prototypes are thinner than 0.4 millimeters,” emphasizes Andreas Bräuer, who is in charge of the Microoptics unit in Jena. “You can gain a real sense of how thin that is by picking up three sheets of carbon paper between your fingers.” Cameras incorporating conventional “human-eye” optics - such as those used in mobile phones - are at best no thinner than seven millimeters.



This development is targeted at all the applications where the advantages of the stick-on sensors really come to the fore. They are already being produced on wafers like microchips, which is a key requirement if they are one day to be manufactured cost-effectively, on an industrial scale. The next stage of the project is to install the camera in series-production units suitable for use in industry. The most important step will be to connect the lens system with receiver arrays, for example with a CMOS chip. The optical and electronic systems will then be so flat that it will be possible to integrate them in a chipcard with a thickness of 0.8 millimeters. If the chipcard “sees” that it is being used by a stranger it could block the money transfer. Just a vision? Interesting applications are also opening up for driver assistance systems in automobiles: Instead of a gawping camera lens, a discrete gray square would blend in with the car interior. From the driver’s line of vision or eye movements, the compound-eye camera could report to the onboard computer that there is a risk of the driver nodding off. Another possibility: Depending on whether a slightly built woman or a heavy man is sitting in the car, the airbag will activate comparatively gently or strongly.

Johannes Ehrlenspiel | alfa
Further information:
http://www.fraunhofer.de

More articles from Information Technology:

nachricht Accelerating quantum technologies with materials processing at the atomic scale
15.05.2019 | University of Oxford

nachricht A step towards probabilistic computing
15.05.2019 | University of Konstanz

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cement as a climate killer: Using industrial residues to produce carbon neutral alternatives

20.05.2019 | Materials Sciences

When bees are freezing

20.05.2019 | Life Sciences

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>