Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Measuring the success of the next generation Internet

21.06.2004



IPv6 will play a key role in the next generation Internet. It promises to deliver better quality services than the existing Internet, but how can we be sure? IST project 6QM was set up to ensure service providers deliver what they promise.

The 6QM project has developed technology to measure the quality of service (QoS) in IPv6 networks. "A prominent feature that we are concentrating on in our measurement system is the capability to perform passive flow measurement," says Rudolf Roth, project partner and senior scientist at Fraunhofer FOKUS.

"When a service provider offers a certain quality of service it is necessary to validate that the promised quality is actually delivered. The system tests this by observing the actual traffic flowing through the Internet, to give an accurate picture of the service being delivered," adds Roth. Measurement results can be displayed graphically so it is easy to see if the quality of service meets the agreed service level agreement.



The measurement system is a lightweight software solution that can be easily deployed into various parts in the network and in end-systems, including handheld mobile devices. "An important part is the configuration of the probes, and how to specify what to measure," furthers Roth.

The system was developed in joint partnership between partners from industry and research. Coordinated by Hitachi Europe, France Telecom R&D, Consulintel, S.L. and Fraunhofer FOKUS make up the other partners in 6QM. The involvement of Hitachi Ltd. Japan underlines the global importance of research issues addressed in the project.

Public presentations of the system in various application scenarios have taken place to demonstrate the viability of the measurement approach. The quality of multimedia streaming over satellite links was measured and presented at Cebit Hannover and Global IPv6 Summit 2003 in Madrid.

Another demonstration at 6NET Spring Conference, held in Brussels on 18-19 May 2004, showed how the 6QM system can test the quality of service in an online gaming context. The system was used to measure the delay between the game server and players located in Madrid, Brussels, Berlin and Tokyo. Such information can be used in order to give better fairness to online gamers by compensating for differences in the delay experienced by the participating players.

Researchers from 6QM are actively participating in the Internet Engineering Task Force (IETF) to develop standards for QoS measurement. "A major part of the work [at 6QM] is to contribute to upcoming standards," says Roth and he describes the measurement system as a "necessary piece in the whole picture" for the progress of IPv6.

The project will also look into how to perform measurements across multiple administrative domains and further research into how to best configure the probes and how to scale high volumes of measurement data. The 6QM project will concentrate on scenarios in home automation networks to demonstrate the system’s applicability to future technologies.

Stéphane Amarger | IST Results
Further information:
http://www.hitachi-eu.com
http://www.6qm.org/index.xml

More articles from Information Technology:

nachricht Open source software helps researchers extract key insights from huge sensor datasets
22.03.2019 | Universität des Saarlandes

nachricht Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips
14.03.2019 | Universität des Saarlandes

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>