Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New chip set to revolutionise science and medicine

18.05.2004


An engineer at the University of Sheffield is leading a £4.5m project that could revolutionise the way scientists, medics and others see the world – by allowing the earlier detection of cancer, the instant analysis of medical screening tests, and permitting the emergency and security services to work effectively in murky surroundings. It will also open up broad tracts of science to unique high-quality imaging by enabling physicists to understand better the most fundamental interactions of matter, by providing better pictures from space, and probing in unprecedented detail the dynamics inside living cells.



The MI-3 project is focussing on developing and exploiting a new generation of programmable chips that will produce images that can be transformed even before they leave the camera. Active Pixel Sensors exploit the capabilities of Complimentary Metal Oxide Semi-Conductor (CMOS) Chips by allowing intelligent imaging that can focus right down to individual pixels. This project will also allow experts to view non-visible light, such as high-energy particles and x-rays and beyond to the ultra-violet spectrum and into the infra-red. The MI-3 project is part of the UK Research Councils Basic Technology Initiative and is a multi-disciplinary research group.

Professor Nigel Allinson from the University of Sheffield is leading this study. He explains, “The imaging technology in products like digital cameras and camcorders are called Charged Coupled Devices (CCD). They are great for what they do, but they are expensive and slow. Disposal applications, such as medical screening, need inexpensive technology. Also with CCDs you can only control the quality of an image by varying the exposure time and the aperture - much as you do with a normal film camera. With APS devices, the device itself can control read-out and each individual part of the image is treated. For example, you can choose to look only at a specific part of an image in detail, rather than exposing the whole picture and then trying to zoom in to an interesting region.


“The potential practical applications for this research are huge”, explains Professor Allinson. “Our research teams are working on several applications, including developing a new method for imaging mammograms, which reduces the X-ray dose needed to produce a good image. The transistors in the CMOS chips can be programmed to ensure that the patient is exposed to the smallest possible dose.

“This particular application could be in use in as little as two years. In four to five years we may be able to use APS chips to provide bedside diagnostic tools that will detect cancer at the earliest possible stages, being easier and faster than current body scanners.

“APS cameras are able to cope with images that have high contrast and this is important for scenes taken in adverse conditions. We already have unique technology for seeing through fog and smoke – of course, this not only benefits firemen and search and rescue teams but many areas of security.

”These are just some of the applications for this technology and we are excited to be involved in the development of such an exciting new range of devices.”

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>