Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fault tolerance: a "technological lifejacket"

16.03.2004


As more and more industries use complex technologies, their designers see the need to adopt systems that continue to function even if a component fails - an adoption that promises to be made considerably easier by the work of AMATISTA.



The IST project AMATISTA resulted in the development of what are possibly the first automatic fault tolerance (FT) insertion and simulation tools for the computer-aided design (CAD) of integrated circuits, or microchips. Now, some of the project partners are set to embark on a new initiative that will further advance the development of fault tolerant applications for use in a broad range of sectors where reliability, efficiency and robustness that today are critical, but shall be usual in the near future for daily applications including space, avionics, automotive and medical applications.

Testing their tools


Alcatel Espacio, which coordinated the project and will also be involved in the new initiative, tested the AMATISTA fault tolerance insertion tool, and fault injection and simulation tool on the design of field programmable gate arrays (FPGAs) and application specific integrated circuits (ASICs) for use in satellites. Project partner Fiat CRF, the research department of the Italian car maker, ran tests on the design of the circuits used in the engine control units of cars. The trials indicated that the CAD tools allow designers to increase production of FT circuits by as much as 35 per cent, with errors reduced to a minimum and reliability increased.

"The problem of designing FT circuits in the past has been that designers have had to do so manually, which is time consuming and can result in errors occurring during the design process especially as there was no way of testing the end result, before manufacturing" notes Luis Berrojo, technical manager of AMATISTA. "The AMATISTA tools, however, allow designers to avoid making errors, they can automatically insert fault tolerant structures based on recommendations of the best available options and can run simulated errors to see how the design functions."

The AMATISTA project focused on the introduction of FT structures into hardware at the register transfer level, concentrating on the duplication of circuitry to allow systems to function by bypassing faulty elements.

"In the aerospace sector it has always been necessary to ensure designs are robust," explains project manager Rafael Rey Gómez at Alcatel Espacio. "Satellites are put into a very hard testing environment, facing high radiation and dramatic changes temperature, making fault tolerance obligatory. You can’t go up there to repair a faulty circuit so basically you have to build two satellites in one, with the duplication of all of their components. The worst fear of a designer is a fault that results in a complete failure and the loss of the satellite."

With applications for other sectors

This need for reliability, however, is also becoming crucial in other sectors, due to the increased use of advanced technology in every walk of life from cars and trains to communications. "There is evidently a need for FT not just in the aerospace sector, but also in car manufacturing, in industry, in nuclear plants, in the energy sector, in telecommunications and in the military," explains Berrojo. Fiat’s involvement in the project reflects a realisation on the part of car makers that fault tolerance is a necessary element in the high-tech cars being built today with their onboard computers and automatic systems.

"Most research until now has focused on making computer systems faster and more powerful, on pushing the limits of technology, but we are getting to the point where we don’t necessarily need all that speed and power, what we need is reliability, especially with more technology being packed into smaller spaces there is more risk of something going wrong," Rey Gómez stresses. "That is true of a car, a train, a satellite or a medical device - you can’t have a top of the range machine in a hospital if it breaks down when you need to use it... or have the brakes fail on a car."

Ensuring reliability in many application areas and building on the results of AMATISTA will be the aim of the new project that has been proposed by Alcatel Espacio together with iRoC Technologies of France and several other European technology firms under the EUREKA pan-European network for market-oriented, industrial R&D. The project, which will also involve companies such as Phillips, EADS and Airbus, is expected to result in commercially available CAD tools, and promises to represent further progress in the design of FT circuits and the reliability of applications where they are employed.

"Fault tolerance not only makes systems more efficient, in doing so it can save lives, whether in a hospital, a car or an airplane," Rey Gómez says. "It is basically a technological lifejacket."

Contact:
Rafael Rey Gómez / Luis Berrojo
Alcatel Espacio SA
Calle Einstein 7
E-28760 Tres Cantos
Madrid, Spain
Tel: +34-91-8077900/+34-91-8077994
Fax: + 34-91-8077999
Email: Rafael.Rey_Gomez@alcatel.es/ Luis_rafael.Berrojo_Valero@alcatel.es
Source: Based on information from AMATISTA

Tara Morris | IST Results
Further information:
http://istresults.cordis.lu/index.cfm?section=news&tpl=article&BrowsingType=Features&ID=63017

More articles from Information Technology:

nachricht Robots as Tools and Partners in Rehabilitation
17.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Low bandwidth? Use more colors at once
17.08.2018 | Purdue University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>