Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The sensor revolution

16.02.2004


NSF sensors activities in focus at AAAS annual meeting in Seattle



In the 1990s, the Internet connected us to a planet-wide web of information-all the zillions of bits that are stored in computer memories and hard drives. But now, thanks to an ongoing revolution in highly miniaturized, wirelessly networked sensors, the Internet is reaching out into the physical world, as well.

"We call it ’the Embedding of the Internet’," says Deborah Estrin, who is a computer scientist of the University of California, Los Angeles, and director of the Center for Embedded Networked Sensing, a multi-university research partnership that was launched in August 2002 with funding by the National Science Foundation (NSF). "And it’s going to transform our ability to understand and manage the physical world around us."


Indeed, that prospect has led the NSF to fund sensor research for the past decade and more, culminating in a foundation-wide Sensors and Sensor Networks Program that was begun in 2003 with a first-year funding of $47 million. Among the likely applications:


Networks of wireless environmental sensors could be deployed in remote areas to monitor factors such as the moisture load of the vegetation (and thus the degree of fire danger); agricultural runoff in rivers, streams, and groundwater; seismic events; air quality; and the ecosystem’s overall response to climate change.

Bridges and buildings with built-in sensor networkscould report on their own structural integrity, and pinpoint internal damage after an earthquake.

Networks of miniature chemical and biological sensors could be deployed in hospitals, post offices, and other sensitive areas to raise the alarm at the first sign of anthrax, smallpox, ricin, or other indications of a terrorist attack.

Clusters of "smart," but almost undetectably small sensors could be scattered across a stretch of hostile territory by air to monitor traffic and troop movements.
Sensors and their applications will also be very much in evidence at the Seattle meeting of the American Association for the Advancement of Science (AAAS). Among the most prominent events will be two topical lectures:

Deborah Estrin: Instrumenting the World with Wireless Sensor Networks Friday, February 13, 2004, 1:30 to 2:15 p.m.

Larry R. Dalton: Electro-Optics for the Next Generation Information Technology, Sensing, And Defense Applications Friday, February 13, 2004, 1:30 to 2:15 p.m. Dalton is director of the NSF-funded Center on Materials and Devices for Information Technology Research at the University of Washington.

But other sessions will be dealing with sensors, as well:

Cyberinfrastructure: Revolutionizing Environmental Science in the 21st Century Friday, February 13, 2004, 9:00 a.m. - 12:00 noon & 2:30 p.m. -5:30 p.m. Estrin will be giving a technical talk in the afternoon session. "Cyberinfrastructure" is a term that ’s come to describe NSF’s most expansive, long-term vision of computing-a vision that most definitely includes extensive sensor networks.

Miniaturization of Chemical, Energy and Biological Systems for Security Applications Friday, February 13, 2004, 2:30 p.m. - 5:30 p.m.

2004 Nanotechnology Seminar: Chemical and Biological Nanosensors Friday, February 13, 2004, 10:00 a.m. - 1:00 p.m.

21st Century Photonics Sunday, February 15, 2004, 9:00 a.m. - 12:00 noon & 2:30 p.m. -5:30 p.m. Larry Dalton will be speaking in the morning session.

Mitchell Waldrop | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Information Technology:

nachricht Controlling robots with brainwaves and hand gestures
20.06.2018 | Massachusetts Institute of Technology, CSAIL

nachricht Innovative autonomous system for identifying schools of fish
20.06.2018 | IMDEA Networks Institute

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>