Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Software Gives Surveillance Eyes a ‘Brain’

13.02.2004


In these days of heightened security and precautions, surveillance cameras watching over us as we cross darkened parking lots or looking over our shoulders at airports may seem reassuring, but they’re only of use if someone is watching them. Researchers at the University of Rochester’s computer science laboratories have found a way to give these cameras a rudimentary brain to keep an eye out for us, and the research is already been licensed to a Rochester company with an aim toward homeland security.



“Compared to paying a human, computer time is cheap and getting cheaper,” says Randal Nelson, associate professor of computer science and creator of the software “brain”. “If we can get intelligent machines to stand in for people in observation tasks, we can achieve knowledge about our environment that would otherwise be unaffordable.”

Far from being an electronic “Big Brother,” the software would only focus on things for which it was trained to look—like a gun in an airport, or the absence of a piece of equipment in a lab. Nelson has even created a prototype system that helps a person find things around the house, such as where reading glasses were left.


Nelson set about experimenting with how to differentiate various objects in a simple black-and-white video image like that used in a typical surveillance camera. The software initially looks for changes that happen within the image, such as someone placing a cola can on a desk. The change in the image is immediately highlighted as the software begins trying to figure out if the change in the image is a new object in the scene, or the absence of an object that was there before. Using numerous methods, such as matching up background lines that were broken when the new object was set in front of them, the prototype system is accurate most of the time. It then takes an inventory of all the colors of the object so that an operator can ask the software to “zoom in on that red thing” and the software will comply, even though the soda can in question may be red and silver and overlaid with shadows.

The next step, however, is where Nelson’s software really shines. Nelson has been working for years on ways to get a computer to recognize an object on sight. He began this line of research over a decade ago as he wrote software to help a robot “shop”—picking out a single item, like a box of cereal, from several similar items. One of the tasks he recently gave his students was to set up a game where teams tried to “steal” objects from one another’s table while the tables were monitored by smart cameras. The students would find new ways to defeat the software, and consequently develop new upgrades to the system so it couldn’t be fooled again.

Though a six-month-old baby can distinguish different objects from different angles, getting a computer to do it is a Herculean task of processing, and more complicated still is identifying a simple object in a complicated natural setting like a room bustling with activity.

Unlike the baby, the software needs to be told a lot about an object before it’s able to discern it. Depending on how complex an object is, the software may need anywhere from one to 100 photos of the object from different angles. Something very simple, like a piece of paper, can be “grasped” by the program with a single picture; a soda can may take half a dozen, while a complex object like an ornate lamp may need many photographs taken from different angles to capture all its facets. With those images in mind, the software matches the new object it sees with its database of object to determine what the new object is.

The technology for this ‘smart camera’ has already been licensed to the local company PL E-Communications, LLC., which has plans to develop the technology to control video cameras for security applications. For instance, CEO Paul Simpson is looking into using linked cameras covering a wide area to exchange information about certain objects, be they suspicious packages in an airport or a suspicious truck driving through a city under military control. Even unmanned aerial reconnaissance drones like the Predator that made headlines during the current Iraqi war can use the technology to keep an eye on an area for days at a time, noting when and where objects move.

“We’re hoping to make this technology do things that were long thought impossible—making things more secure without the need to have a human operator on hand every second.” says Simpson.

Nelson and PL E-Communications were connected through the Center for Electronic Imaging Systems (CEIS), a NYSTAR-sponsored Center for Advanced Technology (CATs) devoted to promoting economic development in the greater Rochester region and New York State. CEIS develops and transfers technology from local universities to industry for commercialization, and by educating the next generation of leaders in the fields of electronic imaging and microelectronics design.

Jonathan Sherwood | University of Rochester
Further information:
http://www.rochester.edu/news/show.php?id=1698

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>