Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better Shadows With New Algorithm

15.12.2003


Shadows are extremely important in making the graphics in 3D games and Virtual Reality applications seem natural. Soft shadows in real-time applications has largely been an unsolved problem, but now an algorithm is being introduced that will solve the problem and open many possibilities.



In his doctoral dissertation, Ulf Assarsson at the Department of Computer Engineering, Chalmers University of Technology in Göteborg, Sweden, presents a newly developed algorithm that can create shadows of a much higher quality than ever before for applications with limited calculation time.

What is this good for?


”Apart from the obvious fact that it enhances the feeling of presence in all sorts of games, the technique can be of great interest in other fields that apply Virtual Reality, such as the auto industry, architecture, and various Internet applications,” he says.

Here’s how it works

Sources of light that have some kind of area or volume, that is, all real sources of light, create gradual transitions on shadow edges from no shadow to full shadow. Graphics usually produce shadows with knife-sharp transitions from no-shadow to shadow - so-called “hard shadows” - since they don’t require as much time to calculate.

The larger the light source is, the more diffuse the transition becomes, and it is therefore highly desirable to be able to simulate these “soft shadows” even for real-time applications that only allow some 20 milliseconds to calculate a whole image, if the goal is to produce 50 images per second.

The algorithm solves the problem by utilizing the new programming capacity offered by the latest graphics cards, which are now available even in cheap game cards.

Research on soft shadows started in the 1970s. It has come to the fore again in the last two years.

What’s so special about your algorithm?

“What’s unique is that it can efficiently make use of the new possibility of programming graphics cards, which are now being included in cheap game cards. This makes it extremely fast. There are a few other new algorithms, but they are either way too slow or produce low quality shadows. We are also aware of a number of up and coming inventions that will strengthen our algorithm, so we believe in its potential,” says Ulf Assarsson.

The technology can also handle shadows from more advanced light sources, like the flames of a fire. The algorithm has thus far attracted the attention of players not only in the game industry like Microsoft XBox but also the film industry, where it can be used in programs for computer-generated special effects.

First in Sweden

The algorithm was introduced last summer at SIGGRAPH - the world’s largest and most important computer graphics conference - and constituted one of the first two wholly full-length articles from Sweden ever chosen for the conference.

Ulf Assarsson’s dissertation was directed by Associate Professor Tomas Akenine-Möller, who played a major role in the work.

Jorun Fahle | alfa
Further information:
http://www.chalmers.se

More articles from Information Technology:

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

nachricht A step closer to single-atom data storage
13.07.2018 | Ecole Polytechnique Fédérale de Lausanne

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>