Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breaking Into The Third Dimension Of Computer Chip Design

26.11.2003


Despite continuous technical advances in the semiconductor industry, microchips are still composed of laterally-arranged (side-by-side) transistors on a silicon substrate. EUREKA project E! 2259 VSI developed new ways to break through this two dimensional approach and the restrictions it imposes by designing 3-D chips or Vertical System Integration (VSI).



This technology has immediate security benefits which are very desirable since chip cards often contain secure information or monetary values and, therefore, are subject to attack by hackers. “With the new technology, the top sides of the chips are inside the 3-D stack and therefore not accessible to mechanical attacks, electrical probing or a lot of other physical attacks,” says Wolfgang Gruber of Infineon Technologies AG, the German lead partner.

Infineon appreciates the co-operation a EUREKA project brings. "EUREKA helped us to find an equipment manufacturer with the necessary know how and skills that are only available in a few companies around the world," explains Gruber. "The EUREKA label is a quality label most people associate with a sophisticated research project of high quality – a big advantage when it comes to convincing someone about your ideas!”


Increased flexibility

Using the 3-D chips, it is cheaper and easier to realise mixed technologies in a range of applications such as next-generation 3G mobile phones, smart cards and ’intelligent cars’.

The Austrian partner Datacon developed the machinery to construct the 3-D chips. “Through our close co-operation with Infineon we were able to produce a machine that could exceed the state-of-the-art in terms of production speed and accuracy,” says Christoph Scheiring, Manager of Advanced Technology at Datacon.

The partners have developed two versions of the 3-D stacking. The first will be ready for production in 2004, and is “a cost-efficient, two-layer technology called ’Solid Face to Face’ (F2F), in which one or more chips are attached and in contact with a base chip by a soldering process.” Gruber explains, “a demonstration chip card with a huge amount of memory capable of fulfilling requirements for future multi-application operating systems has been built.”

Work continues on the second version - a multi-layer technology based on F2F that will allow for wiring through a chip to the next chip, thus making stacks of three or more layers possible and further increasing the chip’s flexibility and security. This is due to be ready for production in 2007.

Nicola Vatthauer | alfa
Further information:
http://www.eureka.be/success-stories

More articles from Information Technology:

nachricht A platform for stable quantum computing, a playground for exotic physics
06.12.2019 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Developing a digital twin
06.12.2019 | University of Texas at Austin, Texas Advanced Computing Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>