Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique software speeds calculations on one of world’s fastest supercomputers, other applications

17.11.2003


Ohio State University software is helping some of the world’s fastest supercomputers confront big scientific questions, from global climate change to the structure of intricate molecules.


Dhabaleswar Panda



The software, called MVAPICH, works by connecting traditional supercomputing software with innovative networking technology that speeds data flow.

While supercomputers were once built only as large-scale mainframe structures that were extremely expensive -- some costing tens to hundreds of millions of dollars -- a different kind of supercomputer based on clusters of many desktop-style computers has become more common in recent years, explained Dhabaleswar Panda, professor of computer and information science at Ohio State and leader of the MVAPICH research team.


Yet complicated scientific visualizations, such as the flow of gas molecules in Earth’s atmosphere -- a critical resource for scientists studying climate change -- pose a substantial problem for cluster computing. That’s because individual computers, called nodes, must compute in a parallel manner while sending much information back and forth to each other.

“At some point, adding nodes to a cluster doesn’t make the calculations go any faster, because it introduces communication and synchronization overheads, and researchers have to rely on software to manage communication between nodes effectively,” Panda said. “MVAPICH takes that software a step further by connecting it with the emerging InfiniBand network technology.”

Most notably, Ohio State’s MVAPICH supports Virginia Tech’s innovative Macintosh-based supercomputer, which is expected to rank third on the list of the world’s top 500 fastest supercomputers Sunday at the Supercomputing Conference 2003 in Phoenix.

Another collaboration with computer chip maker Intel and leading InfiniBand developer Mellanox Technologies, Inc, of Santa Clara, California, is opening the Ohio State software to further applications in research and business. These companies have used MVAPICH to enable calculations on an off-the-shelf supercomputer that is capable of performing teraflop-level computing, or trillions of calculations per second. Intel calls-the system TOTS, for “TeraFlop-Off-the-Shelf,” and it will debut in the exhibition hall of the supercomputing conference.

Panda believes that the development of TOTS is leading to a new era of commodity systems when research labs and commercial companies with smaller budgets can benefit from supercomputing technology. MVAPICH helps to make that happen, he said.

MVAPICH bridges the gap between the traditional message passing interface (MPI) -- the software that manages communication between nodes on a supercomputer -- and the InfiniBand technology.

InfiniBand, short for “infinite bandwidth,” is a new networking architecture standard that was developed by an industry consortium to support high performance computing systems, including supercomputers.

Until Panda and Pete Wyckoff, research scientist at the Ohio Supercomputer Center, developed MVAPICH in 2002, InfiniBand and MPI were hopelessly incompatible, Panda said.

The name MVAPICH is short for “MPI for InfiniBand on VAPI Layer.” VAPI refers to the VAPI software interface developed by Mellanox. MVAPICH is pronounced like “em-vah-peach.”

Since 2002, more than 65 organizations world-wide have downloaded the open source MVAPICH code to develop applications. One of the first was Sandia National Laboratory, which recently used MVAPICH to power a large-scale (128-node) supercomputer. A similar project at Los Alamos National Laboratory involves a 256-node supercomputer.

“These projects at national labs are important, because they show that our software can scale up from small applications to large,” Panda said. At Ohio State, Panda had previously tested the software on an 8-node and 16-node cluster.

Builders of supercomputers and modern clusters can visit Panda’s Web site to download the source code for MVAPICH and work with Ohio State to develop new applications (http://nowlab.cis.ohio-state.edu/projects/mpi-iba/).

This is not the first time work from Ohio State and the Ohio Supercomputer Center (OSC) garnered a ranking on the top 500 list. On the current top 500 list, OSC’s cluster ranks 180.

In addition to Ohio State’s collaboration, the Virginia Tech project included collaborations from Apple Computer, Cisco, Liebert, and Mellanox.

The primary funding for Ohio State to develop MVAPICH came from Sandia National Laboratory, the Department of Energy, and the National Science Foundation. Intel provided partial funding, and Mellanox donated InfiniBand network adapters and switches to the project.

#

Contact: Dhabaleswar Panda, (614) 292-5199; Panda.2@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://researchnews.osu.edu/archive/mvapich.htm
http://nowlab.cis.ohio-state.edu/projects/mpi-iba/
http://www.cis.ohio-state.edu/%7Epanda/

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Scientists 'film' a quantum measurement

26.02.2020 | Physics and Astronomy

Melting properties determine the biological functions of the cuticular hydrocarbon layer of ants

26.02.2020 | Interdisciplinary Research

Lights, camera, action... the super-fast world of droplet dynamics

26.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>