Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Chemistry Software Automatically Generates Computer Code

09.09.2003


A new software tool promises to aid scientists whose research has forced them to lead double lives - as computer programmers.


Ponnuswamy Sadayappan



The tool, called the Tensor Contraction Engine (TCE), automatically generates the computer code that chemists, physicists, and materials scientists need to model the structure and interaction of complex molecules, saving them weeks or even months of work.

By making the computer code more efficient, the TCE could even reduce the amount of time required for these projects at national laboratories and supercomputer centers around the country.


“With this tool, scientists can focus on their research rather than writing and debugging software,” said Ponnuswamy Sadayappan, professor of computer and information science at Ohio State University. “They can focus on innovation.”

Sadayappan leads the consortium that introduced a prototype of the TCE Sept. 7 at the national meeting of the American Chemical Society in New York. Partners on the project include Louisiana State University, Oak Ridge National Laboratory, Pacific Northwest National Laboratory, and University of Waterloo.

Once the software is fully developed, it could impact two
of the broadest areas of research in the physical sciences. Both computational chemistry and computational physics concern the behavior of atoms and molecules on very large scales, and they encompass a diverse array of specialties, such as atmospheric chemistry, protein structure, materials science, and industrial chemical processing.

This research also consumes a great deal of supercomputer time around the country. In a recent study, Sadayappan and his colleagues reported that computational chemistry and materials science projects accounted for some 85 percent of computer usage at the Pacific Northwest National Laboratory, 30 percent at the National Energy Research Scientific Computing Center at Lawrence Berkeley National Laboratory, and 50 percent of one computer system at the San Diego Supercomputer Center.

The reason: the interactions of atoms and molecules are so complex that scientists model them using elaborate mathematical matrices, or tensors, containing tens of millions to billions of elements. The modeling process involves dozens to hundreds of manipulations called tensor contractions, which are extremely complex and hard to program efficiently.

The tedious job often falls to graduate students and post-doctoral researchers, who labor for months to write the code before scientists can begin to do any actual research.

Once fully developed, the TCE will perform the task in hours, generating an efficient parallel program that uses a minimum amount of computer memory and fast communication between parallel processors on a supercomputer, Sadayappan said.

Given a mathematical description of a problem in computational chemistry or physics, the TCE generates code in the FORTRAN computer language, which is the most common language used for this kind of research. Scientists then plug that code into their own software programs.

Sadayappan got the idea for the TCE while collaborating on a particularly arduous electronic structure theory project with John Wilkins, an Ohio Eminent Scholar and professor of physics at Ohio State.

“Some problems cropped up during the course of that work that made us realize the magnitude of the challenges involved, and by the time it was all over we had the idea for a way to make things easier,” Sadayappan said.

At an annual workshop hosted by Russell Pitzer, professor of chemistry at Ohio State, Sadayappan discovered that some chemists had been thinking along similar lines. He joined with Pitzer and Gerald Baumgartner, an assistant professor of computer and information science with expertise in programming language design, and other chemists and computer scientists to form the consortium.

Partners outside of Ohio State include Jagannathan Ramanujam at Louisiana State University, David Bernholdt and Robert Harrison at Oak Ridge National Laboratory, Marcel Nooijen at the University of Waterloo, and So Hirata at Pacific Northwest National Laboratory. Bernholdt gave the first of the consortium’s presentations on the TCE at the American Chemical Society meeting Sunday.

“The success of such an endeavor requires a team with expertise in several disciplines,” said Sadayappan, “and we are fortunate to have that -- with world renowned quantum chemists Nooijen and Harrison, Bernholdt’s expertise in developing software interfaces, Ramanujam’s expertise in compilers, and Hirata’s ability to bridge computer science and chemistry, as evidenced by his prototype TCE.”

Sadayappan also emphasized the work that many postdoctoral researchers and students have contributed to the project, both in developing the ideas and implementing the software, which now contains almost 50,000 lines of code.

Now is the time for potential users of the TCE to join with the consortium and help shape the system’s functionality, Sadayappan said. Interested scientists should contact him to attend future project meetings and participate in dialogs concerning new features.

Development of the Tensor Contraction Engine was funded by the National Science Foundation through its Information Technology Research program, with the intention that the TCE source code will be made available to researchers. The consortium members from the national laboratories have been funded by the Department of Energy.


Contact: Ponnuswamy Sadayappan, (614) 292-0053;
Sadayappan.1@osu.edu

Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | Ohio State University
Further information:
http://www.osu.edu/researchnews/archive/tcengine1.htm
http://www.itr.nsf.gov/
http://www.energy.gov/engine/content.do

More articles from Information Technology:

nachricht Putting food-safety detection in the hands of consumers
15.11.2018 | Massachusetts Institute of Technology

nachricht Next stop Morocco: EU partners test innovative space robotics technologies in the Sahara desert
09.11.2018 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>