Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making 3-D Chips a Reality

01.09.2003


Rensselaer Researchers Pioneer Interconnect Technology that May Take Chips Into 3-D



Researchers led by Ronald J. Gutmann in the Focus Center-New York at Rensselaer (FC-NY-RPI) are pioneering new interconnect technologies that promise to deliver smaller, faster, inexpensive, microelectronics and circuits that function in three dimensions.

Researchers at Rensselaer’s Focus Center-NY for Interconnections for Gigascale Integration believe that a strategy in which several chip wafers are bonded together in 3-D and interconnected provides an effective means to integrate chip technologies, and will dramatically improve performance and function. Working with collaborators from the semiconductor industry and other universities, the Rensselaer team is developing more effective interconnects that will allow information to get where it’s going more quickly and make computing ever faster.


Jian-Qiang “James” Lu, a research associate professor of physics and electrical engineering, presented some of their findings in a paper co-authored with International SEMATECH (Austin, Texas) at the International Interconnect Technology Conference (IITC) in June.

“At Rensselaer, we’re working with others to develop a very promising approach to building vertically integrated (3D) circuits; going up instead of across”, says Lu.

Vertical Bridges to the Next Level

An interconnect is essentially a vertical bridge to another level. But it’s nearly impossible to keep building such bridges in two dimensions, Lu explains, because bridges span a chip similar to the way the Brooklyn Bridge spans the East River.

“It’s a matter of necessity to consolidate space on a chip. Since real estate is dwindling as chip size decreases, the only way to go it seems, is up,” says Lu. “If you’re in a city, like New York for example, and you want to increase and expand the scale of your business, you need to increase real estate, narrow the streets, and build bridges. But New York City is only so big, so you need to build skyscrapers. It’s the same with chips, Rensselaer is attempting to build the information bridges for the chip skyscrapers.”

If you want the signal to travel from one side of the chip to the other, there will be a delay because the global circuit wire is so long in 2-D (typically travel is 10,000 microns). One simple solution to interconnectivity is to cut that large chip to several small chips, then stack and connect them vertically. By cutting and stacking interconnects you can slash that global travel distance to 10 microns or less (chip-to-chip).

Damascene Processing

To make and interconnect 3-D chips, Lu explains Rensselaer’s process of effectively bonding wafers together face-to-face. After bonding and thinning the top wafer, inter-wafer interconnects are formed using the industry standard “damascene” processing. This process includes drilling a hole using dry etching, filling it with copper (the industry standard material), and polishing away extra copper define the metal lines that will carry signals around the “stacked-chip” product. Gutmann was a leader in developing this damascene process for defining metal lines. This damascene interconnect formation process, combined with wafer alignment, bonding and thinning, can be repeated for the third wafer, says Lu.

"We’re developing monolithic wafer-level 3-D integration processes that potentially can achieve all the advantages of system-on-a-chip and system-in-a-package, while lowering cost, enabling the use of small form factors and achieving high performance," Lu said.

Hyper-Integration

Further advancements and benefits of such a system on a 3-D chip are that each layer can be optimized for any given technology, meaning in one 3-D chip you could integrate (hyper-integrate) terahertz technology, mixed signal processing, wireless and optical systems.

“Mixing the systems on a 3-D chip will enable technology for future chips to be low-cost and will also allow nanoelectronic, opto-electronic, and biochemical circuits to be integrated into heterogeneous systems,” says Lu. Several RPI faculty members lead design, modeling and applications-oriented efforts that support different aspects of this fairly large effort.

Also, the development cycles of various technologies using 3-D technology can be combined which compresses manufacturing time. Currently the cycles are dependant upon each other on a 2-D chip. With 3-D technology you can pick off-the-shelf technologies and plug them in, manipulating each layer separately and optimizing it to the needs of the user, explains Lu.

About Rensselaer’s Focus Center

The Focus Center-New York, Rensselaer is led by Timothy S. Cale, professor of chemical engineering, and is part of the Interconnect Focus Center (IFC): Interconnections for Gigascale Integration, that focuses on interconnects. The IFC is part of the SIA/DARPA driven Focus Center Research Program (FCRP), and focuses on the discovery and invention of new solutions that will enable the U.S. semiconductor industry to transcend known limits on interconnects that would otherwise decelerate or halt the rate of progress toward gigascale integration. The IFC officially started in October of 1998, and is headquartered at Georgia Institute of Technology. Other universities involved in the IFC, in addition to Rensselaer, include Massachusetts Institute of Technology, Stanford University, State University of New York at Albany, and the University of California, Los Angeles. The New York universities form the FC-NY, which is headquartered at SUNY Albany.

Technical Contacts: Tim Cale, Director, Focus Center-NY, Rensselaer:
Interconnections for Gigascale Integration
(518) 276-8676 or calet@rpi.edu
http://banyan.cie.rpi.edu/~cale/

James Lu, Research Associate Professor of Physics
(518) 276-2909 or luj@rpi.edu
http://www.rpi.edu/~luj


Theresa Bourgeois | Rensselaer News
Further information:
http://banyan.cie.rpi.edu/~cale/
http://www.rpi.edu/~luj

More articles from Information Technology:

nachricht Terahertz wireless makes big strides in paving the way to technological singularity
19.02.2019 | Hiroshima University

nachricht Gearing up for 5G: A miniature, low-cost transceiver for fast, reliable communications
19.02.2019 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

How the intestinal fungus Candida albicans shapes our immune system

22.02.2019 | Life Sciences

Correct antibiotic dosing could preserve lung microbial diversity in cystic fibrosis

22.02.2019 | Health and Medicine

The evolution of grain yield – Decoding the genetic basis of floret fertility in wheat

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>