Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PNNL supercomputer fastest open system in U.S.

27.08.2003


11.8T HP supercomputer with Intel Itanium2 processors running Linux reaches full operations.



The Department of Energy’s Pacific Northwest National Laboratory is now home to the United States’ fastest operational unclassified supercomputer. The laboratory’s 11.8 teraflops industry-standard HP Integrity system came to full operating power this week, marking the next advance in high-performance computing designed to enable new insights in the environmental and molecular sciences, including chemistry, biology, climate and subsurface chemistry.

Based on peak performance, the PNNL machine is the fifth fastest system in the world and is the fastest unclassified computer operating in the U.S. The laboratory ordered the supercomputer from HP in April 2002.


“Computational resources such as the PNNL supercomputer are essential to DOE’s commitment to provide the most innovative solutions to critical energy and environmental problems,” said Secretary of Energy Spencer Abraham. “DOE continues to demonstrate its competitiveness in high-performance computing capabilities by investing in new systems and new approaches to scientific inquiry.”

The PNNL system is the world’s fastest supercomputer based on the Linux operating system and is the largest machine ever built using Intel’s 64-bit architecture.

“With this machine, PNNL is providing a balanced architecture that is designed specifically for environmental, chemical and biological sciences and the priorities of DOE’s Office of Science,” said PNNL Director Len Peters. “The laboratory led the supercomputer industry by ordering one of the first large cluster systems in 1996, and has once again demonstrated that an investment in mission-focused computing can open new scientific frontiers. We’re pleased we could partner with HP on such an accomplishment.”

PNNL’s supercomputer draws its speed and computing power from nearly 2,000 next-generation Intel® Itanium®-2 processors code-named “Madison,” running on industry-standard HP Integrity servers. Linking the Intel Itanium2 chips is a Quadrics interconnect that provides communication between processors and allows scientists to sustain a high performance level. HP is providing services to customers that help manage, deploy and enhance the power and ability of supercomputing.

“HP and PNNL are working together to create next-generation technical computing solutions that will support some of the world’s most important scientific research,” said Martin Fink, vice president of Linux, HP Enterprise Servers and Storage. “The world’s fastest Linux supercomputer runs on industry-standard HP platforms and the recently unveiled Madison processor, and was created by a joint effort between PNNL and the many hardware, software and services professionals within the HP organization.”

The PNNL supercomputer is housed in the Molecular Science Computing Facility of the William R. Wiley Environmental Molecular Sciences Laboratory, a DOE scientific user facility located at PNNL. As such, scientists from around the country can access the supercomputer for research through a competitive proposal process. The new capability will enable scientists to solve scientific problems that are more complex and do so more quickly than other architectures.

According to Scott Studham, who manages computer operations within the MSCF, “We chose the HP system during our competitive procurement process because its overall system balance was best tailored to the needs of the complex computational chemistry done at PNNL. The additional power and speed will enable novel studies in atmospheric chemistry, systems biology, catalysis and materials science.”

Proposals to use the supercomputer can be submitted through a process outlined at http://www.emsl.pnl.gov/using-emsl/. Business inquiries on PNNL research and technologies should be directed to 1-888-375-PNNL or e-mail: inquiry@pnl.gov.

Pacific Northwest National Laboratory is a Department of Energy Office of Science facility that is gaining new knowledge through fundamental research and providing science-based solutions to some of the nation’s most pressing challenges in national security, energy and environmental quality. The laboratory employs more than 3,800 scientists, engineers, technicians and support staff, and has an annual budget of nearly $600 million. Battelle, based in Columbus, Ohio, has operated PNNL since its inception in 1965 for the federal government.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the nation, manages 10 world-class national laboratories and builds and operates some of the nation’s most advanced research and development user facilities. More information about the Office of Science is available at www.science.doe.gov.

Staci Maloof | PNNL
Further information:
http://www.pnl.gov/news/2003/03-33.htm
http://www.emsl.pnl.gov/using-emsl

More articles from Information Technology:

nachricht Open source software helps researchers extract key insights from huge sensor datasets
22.03.2019 | Universität des Saarlandes

nachricht Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips
14.03.2019 | Universität des Saarlandes

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>