Forum for Science, Industry and Business

Search our Site:

Researcher Invents New Graphing Method

13.08.2003

“Diamond Graph” Corrects Long-Standing Errors of 3-D Bar Graphs

Example of New Diamond Graph

Looks can be deceiving. That’s one of the problems with today’s three-dimensional bar graph. While these graphs may look correct, researchers from the Johns Hopkins Bloomberg School of Public Health believe they are in fact inaccurate and misleading.

Currently, the 3-D bar graph is used in countless computer programs, scientific journals, and newspapers to display financial, medical, and other information in which two variables lead to an outcome. Alvaro Muñoz, PhD, a professor of epidemiology at the School of Public Health, has developed the new Diamond Graph, which corrects these errors and represents all the variables equally in a form that is easy to read. He believes the new graphing method could replace the traditional 3-D bar graph in software commonly used in business and science. Dr. Muñoz and his colleagues described the Diamond Graph method in an article published in the August 2003 edition of the peer-reviewed journal, The American Statistician.

So what is wrong with the old method? According to Dr. Muñoz, the 3-D bar graph has three main flaws. First, the variables, which equally contribute to an outcome, are not equally represented in the diagram. This gives the impression that one variable is more important than another. Second, it is sometimes difficult, if not impossible, to distinguish the true value of the bars, because of the problems of representing a three-dimensional image on a two-dimensional page. Because of perspective, some bars appear to be of greater or lesser value when they are actually of equal value. The third drawback of the 3-D graph is that it cannot be used to present overlapping data. In some cases, parallel bars with higher values may obscure those with lower values making the graph useless.

“The inaccuracies of the traditional 3-D bar graph may seem trivial, but they can be significant when you’re dealing with important information like predicting your risk for a heart attack or plotting the performance of your company investments,” said Dr. Muñoz.

The new Diamond Graph method corrects the inaccuracies and limitations of the 3-D bar graph by representing all variables equally on a 2-D graph. The Diamond Graph is essentially the view of the bar graph from above rather than from the side. Instead of using rising parallel bars, the Diamond Graph uses expanding polygons within a diamond-shaped grid to represent values. The researcher experimented with other shapes, but found that the six-sided polygon was the only shape to represent the outcomes equally within the grid as it expanded.

Over the years, other researchers have attempted to develop a better graphing method, but the Diamond graph is the first to equally represent the relationships between a continuous outcome and each of the two categorical predictors in a single plot.

“We call our new method of display the Diamond Graph. It has the shape, and hopefully, the value of a diamond. Perhaps more importantly, it is reminiscent of the baseball diamond that The American Statisticians equiponderantly love. Who would have thought we would still be inventing new methods of graphing in the twenty-first century?”

Johns Hopkins University is seeking partners who would like to incorporate the Damond Graph method into their commercial software. JHU has a patent pending. Inquiries may be directed to Deborah Alper at Johns Hopkins Bloomberg School of Public Health at dalper@jhsph.edu or 443-287-0402.

“A Diamond-Shaped Equiponderant Graphical Display of the Effects of Two Categorical Predictors on Continuous Outcomes” was written by Xiuhong Li, Jennifer M. Buechner, Patrick M. Tarwater and Alvaro Muñoz.

The research was sponsored by grants from the National Institute of Allergy and Infectious Diseases.

Public Affairs Media Contacts for the Johns Hopkins Bloomberg School of Public Health: Tim Parsons or Kenna Brigham at 410-955-6878 or paffairs@jhsph.edu .

Tim Parsons | Johns Hopkins University
Further information:
http://www.jhsph.edu/Press_Room/Press_Releases/Munoz_diamond_graph.html

More articles from Information Technology:

Scientists develop algorithm for researching evolution of species with WGD
26.02.2020 | ITMO University

High-pressure scientists in Bayreuth discover promising material for information technology
25.02.2020 | Universität Bayreuth

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Im Focus: From China to the South Pole: Joining forces to solve the neutrino mass puzzle

Study by Mainz physicists indicates that the next generation of neutrino experiments may well find the answer to one of the most pressing issues in neutrino physics

Among the most exciting challenges in modern physics is the identification of the neutrino mass ordering. Physicists from the Cluster of Excellence PRISMA+ at...

Im Focus: Therapies without drugs

Fraunhofer researchers are investigating the potential of microimplants to stimulate nerve cells and treat chronic conditions like asthma, diabetes, or Parkinson’s disease. Find out what makes this form of treatment so appealing and which challenges the researchers still have to master.

A study by the Robert Koch Institute has found that one in four women will suffer from weak bladders at some point in their lives. Treatments of this condition...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

All Focus news of the innovation-report >>>

Anzeige

Anzeige