Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Revolutionary Processor at disposal of the Environment Intelligence

01.08.2003


On August 18th and 19th in Stanford, California, at Hot Chips 15 conference, the most important international event on processors architecture, mAgic VLIW will be presented: it is a revolutionary electronic component derived by technologies developed by Italian National Institute for Nuclear Physics (Infn) in the context of the special project Ape and conceived by the Italian company Ipitec, financed by Atmel. The processor will be produced by Atmel itself, a world-wide leader in the semiconductor market.

MAgic VLIW surface is about 25 square millimetres, equal to a fourth of a little finger nail, and it is able to do a billion and a half operations per second, spending only half a watt, which means fifty times less than a personal computer with the same computing power. The new component has been conceived mainly to create the so-called environment intelligence, generally considered next bound of electronics. The environment intelligence is an hardware and software ensemble that will be able to provide flexible systems, capable of elaborating different signals coming from the surrounding environment, such as sounds, images or radio waves. In this way, it will be possible to interact with surrounding things in a more natural way, as if you communicate with another human being. In fact human being is able to concentrate on the sound of a voice or on a face, ignoring noises or images around, rather than using simple commands proper of usual interaction with a computer.

Thanks to its very high computing power, mAgic enables to create miniaturized electronic systems able to elaborate in real-time, audio, ultrasonic and radio complex signals in input and output.



MAgic VLIW will be immediately marketed by Atmel with a first System on Chip named "Janus", specialized in synthetic beam-forming of directional waves (audio, radio, ultrasonic and radar) and physical modelling (real-time reproduction of a system behaviour, starting from equations that describe it).
"One of the most interesting applications of this system is an innovative generation of digital instruments for ecographic ultrasound scanners that will provide clearer images than the ones provided by traditional scanners and surely for lower cost. A prototype is studied by the Italian company Esaote and it will be set up by 2004. A second application that mAgic VLIW will enable is a very high quality and a low cost hand-free audio-conference system: you can phone and in the meantime do any other kind of activity (voice will be received through several microphones and it will be separated from echoes and noises). Moreover mAgic VLIW will be used to obtain high speed radio connections", explains Pier Stanislao Paolucci, researcher of Infn section in Rome and director of mAgic VLIW project.

The Technological know-how, that allowed the divelopment of mAgic VLIWwas created in the context of the Infn special project Ape (Array Processor Experiment). The project was born in 1984 by a group of Italian Theoretical Physicists led by Nicola Cabibbo and Giorgio Parisi, both professors at La Sapienza University in Rome and Physicists at Infn. The aim of the project is the development of Theoretical Physics simulation- of super- computers for the study of Theoretical Physics of interactions of elementary particles. "Since the beginning of the project, three generations of massive parallel computers were created and the fourth, apeNext, will be available for researchers in September. Machines of "Ape family" have provided European scientists with more and more powerful supercomputing instruments for the study of the characteristics of elementary particles" explains Nicola Cabibbo. Ape project is currently directed by Federico Rapuano, of Infn in Rome La Sapienza section, who remarks: "Today most European Physicists involved in the field of the fundamental interactions uses Ape machines. It is a great success for Italian research in a context traditionally dominated by American and Japanese technology.

At the same time, some of the ideas developed by Ape project have become key ingredients for the develpoment of low power and cost-high performance processors. Ipitec is a research and development centre founded in 2000 and it has been located in Rome in order to be close to the reasearch group and to the technologies developed by Infn in Ape context. Lots of Ipitec designers have begun their professional activity in the Ape project. Atmel, a Silicon Valley company founder and financer of Ipitic, has produced integrated circuits designed by Infn and used in the Ape machines Raffaele Tripiccione, coordinator of Ape project says "integrated circuits of Ape represent one of the few cases of complete computing processors developed in Europe."

MAgic VLIW project has attracted investements from the United States to Italy and is creating highly qualified jobs, even thanks to an important contribution from the European Commission (mAgic VLIW Esprit project 27000).

For further information:

Prof. Nicola Cabibbo
e-mail: nicola.cabibbo@roma1infn.it

Prof. Federico Rapuano
INFN Rome Section and Physics Department University Milano-Bicocca
e-mail: federico.rapuano@roma1.infn.it

Prof. Raffaele Tripiccione
INFN Ferrara Section and Physics Department University of Ferrara
e-mail: raffaele.tripiccione@fe.infn.it

Dr. Pier Stanislao Paolucci
e-mail: Pier.Paolucci@roma1.infn.it

INFN Communication Office
Dr. Barbara Gallavotti
e-mail: Barbara.Gallavotti@Presid.infn.it

Barbara Gallavotti | alfa
Further information:
http://www.infn.it/comunicati

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>