Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

IBM, Infineon Develop Most Advanced MRAM Technology to Date - Develop highest density revolutionary memory technology

10.06.2003


Joint news release of Infineon Technologies and IBM

IBM and Infineon Technologies AG (FSE/NYSE: IFX) today announced they have developed the most advanced Magnetic Random Access Memory (MRAM) technology to date by integrating magnetic memory components into a high-performance logic base.

Today’s announcement could accelerate the commercialization of MRAM, a breakthrough memory technology with the potential to begin replacing some of today’s memory technologies as early as 2005. MRAM could lead to ‘instant on’ computers, allowing users to turn computers on and off as quickly as a light switch.



At the VLSI Symposia taking place here this week, IBM and Infineon are presenting their high-speed 128Kbit MRAM core. It is fabricated with a 0.18 micron logic-based process technology, the smallest size reported to date for MRAM technology. This small base enabled IBM and Infineon to incorporate the smallest MRAM memory-cell size of 1.4 square microns, which is about 20 million times smaller than the average pencil eraser top. By accurately patterning the magnetic structures within this small cell, IBM and Infineon researchers were able to control the memory reading and writing operations.

A memory technology that uses magnetic, rather than electronic, charges to store bits of data, MRAM could significantly improve portable computing products by storing more information, accessing it faster and using less battery power than the electronic memory used today. MRAM combines the best features of today’s common memory technologies: the storage capacity and low-cost of Dynamic RAM (DRAM), the high speed of Static RAM (SRAM), and the non-volatility of flash memory. Since MRAM retains information when power is turned off, products like personal computers using it could start up instantly, without waiting for software to “boot up”.

IBM’s MRAM work complements its pioneering and ongoing development of advanced embedded DRAM memory, which is commercially available today and offers advantages over traditional SRAM.

“MRAM has the potential to become the universal memory technology of the future,” said Dr T. C. Chen, VP Science and Technology, IBM Research. “This breakthrough demonstrates that MRAM technology is rapidly maturing and could fundamentally alter the entire memory marketplace within the next few years.”

“Nonvolatile memory technologies like MRAM will play a major role in technology lifestyle solutions and we want to be the number one semiconductor company in this area by having a product demonstrator jointly developed with IBM available early 2004. Together with Altis Semiconductor, a joint venture of IBM and Infineon, we will pave the way for production readiness of MRAM as early as 2005," said Dr. Wilhelm Beinvogl, CTO of the Memory Product Division, Infineon.

Detailed benefits of MRAM

The non-volatility attribute of MRAM carries significant implications, especially for mobile computing devices. Memory technologies like DRAM and SRAM require constant electrical power to retain stored data. When power is cut off, all data in memory is lost. A laptop computer, for example, works from a copy of its software stored in memory. When turned on, a working version of the software is copied from the hard-disk drive into memory, so the user can access it quickly. Every time the power is turned off and then back on, the process must start over. By using MRAM, the laptop could work more like other electronic devices such as a television or radio: turn the power on and the machine jumps almost instantly to life with settings just as you had left them.

Non-volatility can save power as well. Since MRAM will not need constant power to keep the data intact, it could consume much less than current random access memory technologies, extending the battery life of cell phones, handheld devices, laptops and other battery powered products.

The high-speed attribute of MRAM means that electronic products can more quickly access data, and MRAM’s high-density means greater storage capacity.

IBM and Infineon MRAM developments

IBM Research pioneered the development of tiny, thin-film magnetic structures as early as 1974. In the late 1980s, IBM scientists made a string of key discoveries about the "giant magnetoresistive" effect in thin-film structures. These developments enabled IBM to create the first super-sensitive GMR read/write heads for hard-disk drives, stimulating dramatic increases in data density. Altering many of the GMR materials enabled IBM scientists to make the "magnetic tunnel junctions" that are at the heart of MRAM.

IBM and Infineon have more than 10 years experience with successful joint development of new chip technologies, including traditional Dynamic RAM (DRAM), logic and embedded-DRAM technologies. In November 2000, they established a joint MRAM development program. By combining IBM technology with Infineon’s expertise in creating very high-density semiconductor memory, the companies believe MRAM products could be commercially available as early as 2005.

About IBM Research & Microelectronics Divisions

IBM Research is the world’s largest information technology research organization, with more than 3,000 scientists and engineers at eight labs in six countries. IBM has produced more research breakthroughs than any other company in the IT industry. IBM’s early work with MRAM has been conducted in cooperation with the U.S. Defense Advanced Research Agency (DARPA). For more information on IBM Research, visit http://www.research.ibm.com.

IBM Microelectronics is a key contributor to IBM’s role as the world’s premier information technology supplier. IBM Microelectronics develops, manufactures and markets state-of-the-art semiconductor, ASIC and interconnect technologies, products and services. Its superior integrated solutions can be found in many of the world’s best-known electronic brands.

IBM is a recognized innovator in the chip industry, having been first with advances like more power-efficient copper wiring in place of aluminum, faster silicon-on-insulator (SOI) and silicon germanium transistors, and improved low-k dielectric insulation between chip wires. These and other innovations have contributed to IBM’s standing as the number one U.S. patent holder for ten consecutive years. More information about IBM Microelectronics can be found at: http://www.ibm.com/chips.

About Infineon

Infineon Technologies AG, Munich, Germany, offers semiconductor and system solutions for the automotive and industrial sectors, for applications in the wired communications markets, secure mobile solutions as well as memory products. With a global presence, Infineon operates in the US from San Jose, CA, in the Asia-Pacific region from Singapore and in Japan from Tokyo. In fiscal year 2002 (ending September), the company achieved sales of Euro 5.21 billion with about 30,400 employees worldwide. Infineon is listed on the DAX index of the Frankfurt Stock Exchange and on the New York Stock Exchange.

Reiner Schoenrock | Infineon Technologies AG
Further information:
http://www.infineon.com

More articles from Information Technology:

nachricht New method for simulating yarn-cloth patterns to be unveiled at ACM SIGGRAPH
09.07.2020 | Association for Computing Machinery

nachricht Virtual Reality Environments for the Home Office
09.07.2020 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>