Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infineon and Micron announce RLDRAM II Specification

12.05.2003


Next-Generation, High-bandwidth Memory Architecture Targets Communication Data Storage Applications



Infineon Technologies AG and Micron Technology, Inc., today announced the release of the complete specification for reduced latency DRAM II (RLDRAM™ II) architecture. Operating at speeds of up to 400 MHz, RLDRAM II products are the second-generation, ultra high-speed double data rate (DDR) SDRAM that combines fast random access with extremely high bandwidth and high density targeting communication and data storage applications. Datasheets for the 288Mb RLDRAM II devices are now available on the RLDRAM web site.

RLDRAM architecture is designed to meet the memory requirements of today’s high-bandwidth communication applications. The device’s eight-bank architecture is optimized for high speed and achieves a peak bandwidth of 28.8 gigabit per second (Gbps) using a 36-bit interface and a 400 MHz system clock. RLDRAM II boasts a low latency and random cycle time (tRC) of 20ns providing a higher data throughput. Additional advantages of the RLDRAM II feature set include; on-die termination (ODT), multiplexed or non-multiplexed addressing, on-chip delay lock loop (DLL), common or separate I/O and programmable output impedance and a power efficient 1.8V core. These features provide designers with increased design flexibility, balanced READ and WRITE ratio and the elimination of bus turnaround contention; as well as a simplified design-in process.


“ RLDRAM II devices are an excellent solution to enable high-speed Ethernet and next-generation networking system designs to achieve up to 10 Gbps to 40 Gbps data rates,” said Deb Matus, Micron’s DRAM Marketing Manager for Networking and Communications. “We continue to see more and more support for this technology throughout the market. Applications using RLDRAM products include networking, consumer devices, graphics and L3 Cache.”

“ The original RLDRAM devices offered a significant performance boost with unprecedented latency for high-speed networking designs,” said Dr. Ernst Strasser, Marketing Director for Specialty DRAM Products at Infineon Technologies. “RLDRAM II devices take another step forward, advancing performance once again for communications products and other applications requiring very high speed random data access and exceptional bandwidth. With publication of the RLDRAM II specification, Infineon and Micron signal our commitment to provide the industry with detailed design standards, a clear roadmap and the assurance of multiple sources from leading memory manufacturers. It’s a significant benefit for the design community.”

RLDRAM II devices are available in a standard 144-ball FBGA, 11mm X 18.5mm package to enable ultra high-speed data transfer rates and a simple upgrade path from former products. RLDRAM II devices are available in three configurations, 8 Meg x 36, 16 Meg x 18 and a 32 Meg x 9. Infineon and Micron co-developed the RLDRAM architecture, ensuring standardization, multi-sourcing, and functional compatibility.

" The combination of ultra-high bandwidth, speed, and device density delivered in the RLDRAM II devices will be very attractive to designers of advanced telecommunications equipment", said Rina Raman, Director of Applications for Xilinx’ Advanced Products Group. "Xilinx has been working closely with Micron and Infineon and is pleased to provide controller solutions for RLDRAM II which include not only high-performance FPGAs but also an application note, reference design, and demonstration board to help designers characterize and quickly deploy RLDRAM II devices in their designs."

" RLDRAM II provides the memory bandwidth necessary for today’s telecommunications designs," said Justin Cowling, Marketing Director of Altera’s Intellectual Property Business Unit. "Altera has been working with Micron and Infineon to offer high-performance FPGA support for RLDRAM II by leveraging the dedicated DDR I/O circuitry in our Stratix device family."

Ralph Heinrich | Infineon Technologies AG
Further information:
http://www.rldram.com
http://www.infineon.com
http://www.micron.com

More articles from Information Technology:

nachricht Reversing cause and effect is no trouble for quantum computers
20.07.2018 | Centre for Quantum Technologies at the National University of Singapore

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>