Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-high-density data storage may become practical with breakthrough in nanoscale magnetic sensors

03.02.2003


A simpler and more reliable manufacturing method has allowed two materials researchers to produce nanoscale magnetic sensors that could increase the storage capacity of hard disk drives by a factor of a thousand. Building on results reported last summer, the new sensors are up to 100 times more sensitive than any current alternative technology.

Susan Hua and Harsh Deep Chopra, both professors at the State University of New York at Buffalo, report in the February issue of Physical Review B on their latest experiments with nanoscale sensors that produce, at room temperature, unusually large electrical resistance changes in the presence of small magnetic fields. The work is supported by the National Science Foundation (NSF), an independent federal agency that supports fundamental research and education across all fields of science and engineering.

"We first saw a large effect of over 3,000 percent resistance change in small magnetic fields last July," Chopra said. "That was just the tip of the iceberg. These results point to the beautiful science that remains to be discovered." The largest signal they have seen is 33 times larger than the effect they reported last summer, which corresponds to a 100,000 percent change in resistance.



As stored "bits" of data get smaller, their magnetic fields get weaker, which makes individual bits harder to detect and "read." Packing more bits onto the surface of a computer disk, therefore, requires reliable sensors that are smaller, yet more sensitive to the bit’s magnetic field. Hua and Chopra’s nanoscale sensor seems to be ideally suited to the task.

For comparison, the technology in today’s hard disk drives relies on signals as weak as a 20 percent change in resistance. In other words, if sensor has a baseline signal of 1, an "off" bit causes Chopra and Hua’s sensors to spike at signal strength of -1,000, and an "on" bit registers +1,000. Current sensors, which only work on much larger bit sizes, would swing between an "off" signal of 0.8 and "on" of 1.2. The larger changes mean that the new sensors produce much more distinct and reliable signals than current technologies do, which would enable the bit size to be shrunk dramatically.

Chopra and Hua’s sensors have another advantage over other experimental techniques that are currently being studied: Because of the sensors’ high sensitivity at room temperature, they would be straightforward to adapt to work with existing technologies used by the $25 billion hard disk drive industry. Chopra predicts that their sensors would permit disk capacities on the order of terabits (trillions of bits) per square inch.

Their success builds on an effect called "ballistic magnetoresistance" (BMR). "Magnetoresistance" measures the change in electrical resistance when a device is placed in a magnetic field. Many types of magnetoresistance are being explored for sensors that might find use in hard disk drives. The magnetoresistance effect goes "ballistic" when an electron must cross a channel so narrow that the electron shoots straight through without scattering. In a normal wire, an electron zigzags its way through the material in a process called "diffusive" transport.

Chopra and Hua created their ballistic-effect sensors by forming nanoscale nickel "whiskers" between two larger nickel electrodes. Their current experiments include confirmation of the structure and composition of the whiskers with scanning electron microscopy.

The researchers suspect that the ballistic effect stems from pinch points, or constrictions, in the whiskers produced during manufacturing. The new manufacturing method, which also allowed them to reliably produce nanosensors with the desired effect, is therefore a key to Chopra and Hua’s latest success.

Chopra and Hua modified and adapted a method of producing controlled nanoscale wires originally developed b y Arizona State University’s Nongjian Tao, whose work is also supported by NSF. Tao’s electrodeposition method allowed Chopra and Hua to specify in advance the resistance they wanted from their nanoscale whiskers. They can now reproduce their contacts reliably and simply, as opposed to the hit-or-miss method they had used previously. "We have been consistently able to produce contacts with BMR effects of several thousand percent," Chopra said.

Besides disk drives, these types of sensors may also have biomedical applications. For example, the sensor’s electrical properties might be used to detect biomolecules in solution, even in low concentrations, according to Chopra. By attaching itself to the sensor, each type of biomolecule would impart its own "fingerprint" by changing the electrical signal of the nanocontact.

NSF Science Experts:
K.L. Murty
Tel.: 001-703-292-4935
E-mail: kmurty@nsf.gov
Shih Chi Liu
Tel.: 001-703-292-8360
E-mail: sliu@nsf.gov

David Hart | National Science Foundation
Further information:
http://www.nsf.gov/od/lpa/news/02/pr0255.htm
http://www.nsf.gov
http://www.fastlane.nsf.gov/a6/A6Start.htm

More articles from Information Technology:

nachricht Electronic stickers to streamline large-scale 'internet of things'
17.07.2018 | Purdue University

nachricht First machine learning method capable of accurate extrapolation
13.07.2018 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

World’s Largest Study on Allergic Rhinitis Reveals new Risk Genes

17.07.2018 | Life Sciences

Electronic stickers to streamline large-scale 'internet of things'

17.07.2018 | Information Technology

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>