Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-high-density data storage may become practical with breakthrough in nanoscale magnetic sensors

03.02.2003


A simpler and more reliable manufacturing method has allowed two materials researchers to produce nanoscale magnetic sensors that could increase the storage capacity of hard disk drives by a factor of a thousand. Building on results reported last summer, the new sensors are up to 100 times more sensitive than any current alternative technology.

Susan Hua and Harsh Deep Chopra, both professors at the State University of New York at Buffalo, report in the February issue of Physical Review B on their latest experiments with nanoscale sensors that produce, at room temperature, unusually large electrical resistance changes in the presence of small magnetic fields. The work is supported by the National Science Foundation (NSF), an independent federal agency that supports fundamental research and education across all fields of science and engineering.

"We first saw a large effect of over 3,000 percent resistance change in small magnetic fields last July," Chopra said. "That was just the tip of the iceberg. These results point to the beautiful science that remains to be discovered." The largest signal they have seen is 33 times larger than the effect they reported last summer, which corresponds to a 100,000 percent change in resistance.



As stored "bits" of data get smaller, their magnetic fields get weaker, which makes individual bits harder to detect and "read." Packing more bits onto the surface of a computer disk, therefore, requires reliable sensors that are smaller, yet more sensitive to the bit’s magnetic field. Hua and Chopra’s nanoscale sensor seems to be ideally suited to the task.

For comparison, the technology in today’s hard disk drives relies on signals as weak as a 20 percent change in resistance. In other words, if sensor has a baseline signal of 1, an "off" bit causes Chopra and Hua’s sensors to spike at signal strength of -1,000, and an "on" bit registers +1,000. Current sensors, which only work on much larger bit sizes, would swing between an "off" signal of 0.8 and "on" of 1.2. The larger changes mean that the new sensors produce much more distinct and reliable signals than current technologies do, which would enable the bit size to be shrunk dramatically.

Chopra and Hua’s sensors have another advantage over other experimental techniques that are currently being studied: Because of the sensors’ high sensitivity at room temperature, they would be straightforward to adapt to work with existing technologies used by the $25 billion hard disk drive industry. Chopra predicts that their sensors would permit disk capacities on the order of terabits (trillions of bits) per square inch.

Their success builds on an effect called "ballistic magnetoresistance" (BMR). "Magnetoresistance" measures the change in electrical resistance when a device is placed in a magnetic field. Many types of magnetoresistance are being explored for sensors that might find use in hard disk drives. The magnetoresistance effect goes "ballistic" when an electron must cross a channel so narrow that the electron shoots straight through without scattering. In a normal wire, an electron zigzags its way through the material in a process called "diffusive" transport.

Chopra and Hua created their ballistic-effect sensors by forming nanoscale nickel "whiskers" between two larger nickel electrodes. Their current experiments include confirmation of the structure and composition of the whiskers with scanning electron microscopy.

The researchers suspect that the ballistic effect stems from pinch points, or constrictions, in the whiskers produced during manufacturing. The new manufacturing method, which also allowed them to reliably produce nanosensors with the desired effect, is therefore a key to Chopra and Hua’s latest success.

Chopra and Hua modified and adapted a method of producing controlled nanoscale wires originally developed b y Arizona State University’s Nongjian Tao, whose work is also supported by NSF. Tao’s electrodeposition method allowed Chopra and Hua to specify in advance the resistance they wanted from their nanoscale whiskers. They can now reproduce their contacts reliably and simply, as opposed to the hit-or-miss method they had used previously. "We have been consistently able to produce contacts with BMR effects of several thousand percent," Chopra said.

Besides disk drives, these types of sensors may also have biomedical applications. For example, the sensor’s electrical properties might be used to detect biomolecules in solution, even in low concentrations, according to Chopra. By attaching itself to the sensor, each type of biomolecule would impart its own "fingerprint" by changing the electrical signal of the nanocontact.

NSF Science Experts:
K.L. Murty
Tel.: 001-703-292-4935
E-mail: kmurty@nsf.gov
Shih Chi Liu
Tel.: 001-703-292-8360
E-mail: sliu@nsf.gov

David Hart | National Science Foundation
Further information:
http://www.nsf.gov/od/lpa/news/02/pr0255.htm
http://www.nsf.gov
http://www.fastlane.nsf.gov/a6/A6Start.htm

More articles from Information Technology:

nachricht Open source software helps researchers extract key insights from huge sensor datasets
22.03.2019 | Universität des Saarlandes

nachricht Touchscreens go 3D with buttons that pulsate and vibrate under your fingertips
14.03.2019 | Universität des Saarlandes

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>