Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Pinpointing Human Activity in a Video Barrage

24.01.2003


Video cameras are used to keep an eye on many indoor and outdoor locations, but to pinpoint suspicious activity, human security guards or intelligence analysts have the unenviable task of watching dozens of video monitors or many hours of recorded video.



Supported by an NSF award, Jezekiel Ben-Arie and his students at the University of Illinois at Chicago have developed a technique, much faster and more reliable than previous methods, that allows a computer to recognize a human action contained in a video.

Ben-Arie envisions a system that will allow human analysts to search vast databases of digital video by animating the desired action with virtual "puppets" or by videotaping a person making the movements. Ben-Arie’s method makes it feasible to quickly find matching human motions within large amounts of video. This includes searches through databases of surveillance videos for suspicious activities, such as a person putting down an object and leaving.


"Security guards have to monitor 10 or 20 screens continuously, and it’s very boring," said Ben-Arie, a professor of electrical and computer engineering. "A machine won’t get bored. It’s much more practical to have the computer do it."

Ben-Arie’s method, for which he has a provisional patent, identifies and tracks nine major body parts and needs only a few poses from a video segment to distinguish an activity. Yet the method is robust enough to differentiate between activities as similar as walking and running, even with several people in the video.

The technique may have medical applications in physical therapy or analysis of motor function. Other applications might include choreography or sports training, in which a dancer’s or athlete’s movements can be compared against ideal or standardized movements. Ben-Arie and his students described the method recently in IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)

David Hart | NSF
Further information:
http://vision.ece.uic.edu/additioninfo.htm
http://www.nsf.gov/od/lpa/news/03/tip030123.htm

More articles from Information Technology:

nachricht New method for simulating yarn-cloth patterns to be unveiled at ACM SIGGRAPH
09.07.2020 | Association for Computing Machinery

nachricht Virtual Reality Environments for the Home Office
09.07.2020 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>