Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Darwin to Internet at the speed of light

26.11.2002


Internet traffic jams may become history if ESA succeeds in developing new technology to see nearby Earth-sized planets. Why? In looking for new ways to detect planets ESA is thinking that, instead of bulky mirrors and lenses in space, one can build miniaturised optical systems that fit onto a microchip. Such ‘integrated optics’ would also allow earthly computer networks to use high-speed routing of data streams as a natural spin-off.



Data moving around the Internet are like road traffic in that a car can be driven fast down a straight road but has to slow down a great deal when changing direction at a junction. The same thing happens on information highways. Beams of light carry data along fibre-optic cables at very high speeds. When the data arrive at computers, known as servers, the servers redirect them to their final destinations. Presently, you need to convert the light signals into electricity, and that slows everything down.

Electrons move at a speed of a few kilometres per second through a circuit, whereas light travels at nearly 300 000 kilometres per second. Integrated optics would leave the data as light and simply channel it through the chip, in the right direction. Scientists call this area integrated optics, referring to the integrated circuit board on which chips are mounted. Instead of miniaturised electronics, however, miniaturised optics are placed on a microchip.


ESA has a strategy to enable more sophisticated searches for extra-solar planets in the future. Two planned developments rely on combining the light from such planets in a number of different telescopes. These are the Darwin mission and its precursor, the ESA/ESO Ground-based European Nulling Interferometer Experiment (GENIE).

When you combine light beams, you traditionally need moving mirrors and lenses to divert the light beams to where you want them. However, if the system moves, it can break. As Malcolm Fridlund, Project Scientist for Darwin and GENIE says, “To change to integrated optics, which is much smaller and has no moving parts, would be highly desirable.”

Desirable certainly, but also difficult. At present, integrated optics is a science that is far behind integrated circuit technology. For this reason, ESA is funding two studies. Astrium has been asked to study a traditional optics approach and Alcatel is investigating an integrated-optics solution. “We shall take the decision on whether GENIE will use integrated optics in just over one year,” says Fridlund.

In the future, Darwin, ESA’s ambitious mission to find Earth-like planets, may also use integrated optics but using longer wavelengths of light than GENIE. This is uncharted territory as far as integrated optics is concerned. However, Fridlund is currently reviewing proposals from industrial companies which would like to take up the challenge. “What I’’m reading in those proposals is making me highly optimistic,” says Fridlund, “I don’t yet know whether mid-infrared integrated optics will have any commercial application, but until we develop them, we’ll never know.”

Should the integrated-optics approach work, the rewards would extend far beyond a few improvements in searching for planets. Here on Earth, for all home-computer users, for example, it could speed up the Internet by 100–1000 times. The consequences of surfing the Web at such speeds would be amazing.

Franco Bonacina | alfa
Further information:
http://www.esa.int

More articles from Information Technology:

nachricht Multifunctional e-glasses monitor health, protect eyes, control video game
28.05.2020 | American Chemical Society

nachricht Researchers incorporate computer vision and uncertainty into AI for robotic prosthetics
28.05.2020 | North Carolina State University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>