Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Stippling’ speeds 3-D computer imaging

26.11.2002


Ancient artists used a technique called stippling – in which pictures are created by painting or carving a series of tiny dots – to produce drawings on cave walls and utensils thousands of years ago.


This image of a human cranium was created with a new kind of computer-imaging software that uses the ancient technique of stippling to convert complex medical data into 3-D images that can be quickly viewed by medical professionals. Data from CT scans were converted into dots to create the stippled image. Cave dwellers and artisans used stippling thousands of years ago to create figures by painting or carving a series of tiny dots. More recently, 19th century Parisian artist Georges Seurat used the method, also called pointillism, to draw colorful, intricately detailed works. Because dots are the most simple visual element in a picture, they also are ideal for computer visualizations. (Purdue University School of Electrical and Computer Engineering)


This picture of a human foot was created with a new kind of computer-imaging software that uses the ancient technique of stippling to convert complex medical data into 3-D images that can be quickly viewed by medical professionals. In this image, data from CT scans were converted into dots to create the stippled image. Stippling uses tiny dots to create an image. Because dots are the most simple visual element in a picture, they also are ideal for computer visualizations. (Purdue University School of Electrical and Computer Engineering)



Now engineers at Purdue University have created a new kind of computer-imaging software that uses stippling to quickly produce complex pictures of internal organs and other renderings. The method is 10 times faster than some conventional methods and could provide a tool for medical professionals to quickly preview images in real time as a patient is being examined with imaging technologies such as CT scans and magnetic resonance imaging (MRI).

In stippling, also known as pointillism, the artist creates numerous dots with paint, ink or pencil to produce gradations of light and shade, forming an image. Georges Seurat, a 19th century Parisian artist, used the same technique to draw colorful, intricately detailed works.


Because dots are the most simple visual element in a picture, they also are ideal for computer visualizations, said David S. Ebert, an associate professor in Purdue’s School of Electrical and Computer Engineering.

The researchers presented a paper about their new technique Nov. 1 during the Institute of Electrical and Electronics Engineers’ Visualization 2002 Conference in Boston. IEEE cited the work as the best paper presented during the conference. The paper was written by Ebert; Purdue graduate student Aidong Lu; Christopher J. Morris, a researcher at IBM’s Thomas J. Watson Research Center; Penny Rheingans, an assistant professor in the Computer Science and Electrical Engineering Department at the University of Maryland, Baltimore County; and Charles Hansen, an associate professor in the School of Computing at the University of Utah.

The software can use data from three-dimensional imaging techniques – such as CT scans and MRI – to quickly draw pictures of the body, converting those complex, raw medical data into images viewed in real time. The 3-D image can be rotated and manipulated to zoom in on specific portions. Then, a doctor who wanted to view the same regions in more detail could use a more time-consuming imaging method.

"You can apply this to data sets from scientific applications and medical applications to get a quick preview and understanding of the most important features of the data, which you can interact with in real time," Ebert said. "Because points are very simple geometrically, it is a way to pull out the features of the data set or help you find problems more quickly.

"More conventional imaging methods of, say a CT scan of a person’s head, require slower processing techniques, which means either you have to do a lot of processing or it takes a while to generate an image. We can have a CT rendering of a person’s internal organs in real time, where the organs are represented as a series of small points."

The method could be ready for commercialization soon.

"It is at the point where people can download it and use it, so it could be ready for commercial use within a year," said Ebert, director of the Purdue Rendering and Perceptualization Lab.

Animations showing how the method works are available. The research has been funded by the National Science Foundation and the U.S. Department of Energy.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: David S. Ebert, (765) 494-9064, ebertd@purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/021125.Ebert.stippling.html

More articles from Information Technology:

nachricht Multifunctional e-glasses monitor health, protect eyes, control video game
28.05.2020 | American Chemical Society

nachricht Researchers incorporate computer vision and uncertainty into AI for robotic prosthetics
28.05.2020 | North Carolina State University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>