Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software tool will help engineers design jet engines

14.10.2002


Purdue University researchers have created a software tool that is more than 100 times faster than other programs used by engineers to improve jet engine designs



The software analyzes engine models and quickly extracts information that indicates whether the design is mechanically sound, said Mario Rotea, a professor in Purdue’s School of Aeronautics and Astronautics.

Considering the complex inner workings of a jet engine, software aimed at predicting how well a new design will function can be cumbersome and time-consuming. Jet engines house numerous rotating disks containing blades. The mechanical properties of these blades are difficult to predict because they change as they wear and because no two blades are perfectly identical: they emerge from manufacturing with minute variations in geometric shape and mechanical properties.


"But even tiny variations can lead to drastic changes in vibration levels, compromising engine performance and reliability," Rotea said.

Conventional software aimed at evaluating the mechanical properties of blades can take weeks or longer to predict how well the "bladed disks" will work.

However, time is money in industry, and for efficiency’s sake engineers cannot afford to wait weeks for a program to crunch data.

"If it takes a month to give you the answer, that’s not very practical," Rotea said. "What we developed was a technique that is much more intelligent."

Rotea presented new findings about the software tool in July during the 38th Joint Propulsion Conference and Exhibit in Indianapolis and also during the 15th World Congress on Automatic Control in Barcelona, Spain.

Engine designers use computer models to test designs before actually building an engine. The models predict how the multitude of critical engine parts will react to factors such as wear or damage and manufacturing variations.

"That’s because it’s less expensive to use models," Rotea said. "Industry has the ability to develop good models to analyze the vibratory responses of bladed disks. But these models are very complicated. They contain lots of unpredictable parameters, and what was lacking, in my opinion, was a good method to analyze those models to help them extract the numbers they need to say, ’This is a good design or this is a bad design.’"

The software he developed with former graduate student Fernando D’Amato is based on an "optimization algorithm," which is a step-by-step procedure for solving a mathematical problem. This algorithm calculates the worst-case vibration level of the blades due to variations in mechanical properties.

A model of the bladed disk and the range of the possible variations are required to run this algorithm. Although it is difficult to predict exactly which variations a specific blade will have, engineers know what the range is.

"Some parameters change during the life of the engine," Rotea said. "For example, you have blades that get nicked or they wear and they change mechanical properties."

"How do you incorporate that into the model? You cannot predict all those variations that the engine will see in the field. But if you know the ranges for these parameter variations, you can determine the worst-case effect the parameter changes will have in the blade stress and vibration levels without actually searching through all possibilities.

"What we did was to develop an optimization algorithm that calculates the things they want much more efficiently," he said. "We use optimization not to do the design but to actually predict the worst-case behavior over a known range of parameters."

The algorithm analyzes one blade, or a small group of blades, and deduces the worst-case vibration level of any blade in the disk.

The time it takes to calculate the worst-case vibration level grows with the number of parameters that must be considered. The optimization algorithm that was developed by Rotea and D’Amato is about one and a half times faster for each parameter, compared with more conventional software tools.

"The more parameters there are, the more time is saved, Rotea said. "That means bigger problems are solved even more efficiently than smaller ones. If there are 60 parameters, the time savings is very large."

He estimates that, for the average job, the tool is more than 100 times faster than other tools on the market.

The work has been funded by the National Science Foundation and private industry.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Mario Rotea, (765) 494-6212, rotea@ecn.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/020903.Rotea.optimize.html

More articles from Information Technology:

nachricht Study suggests buried Internet infrastructure at risk as sea levels rise
18.07.2018 | University of Wisconsin-Madison

nachricht Microscopic trampoline may help create networks of quantum computers
17.07.2018 | University of Colorado at Boulder

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>