Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software tool will help engineers design jet engines

14.10.2002


Purdue University researchers have created a software tool that is more than 100 times faster than other programs used by engineers to improve jet engine designs



The software analyzes engine models and quickly extracts information that indicates whether the design is mechanically sound, said Mario Rotea, a professor in Purdue’s School of Aeronautics and Astronautics.

Considering the complex inner workings of a jet engine, software aimed at predicting how well a new design will function can be cumbersome and time-consuming. Jet engines house numerous rotating disks containing blades. The mechanical properties of these blades are difficult to predict because they change as they wear and because no two blades are perfectly identical: they emerge from manufacturing with minute variations in geometric shape and mechanical properties.


"But even tiny variations can lead to drastic changes in vibration levels, compromising engine performance and reliability," Rotea said.

Conventional software aimed at evaluating the mechanical properties of blades can take weeks or longer to predict how well the "bladed disks" will work.

However, time is money in industry, and for efficiency’s sake engineers cannot afford to wait weeks for a program to crunch data.

"If it takes a month to give you the answer, that’s not very practical," Rotea said. "What we developed was a technique that is much more intelligent."

Rotea presented new findings about the software tool in July during the 38th Joint Propulsion Conference and Exhibit in Indianapolis and also during the 15th World Congress on Automatic Control in Barcelona, Spain.

Engine designers use computer models to test designs before actually building an engine. The models predict how the multitude of critical engine parts will react to factors such as wear or damage and manufacturing variations.

"That’s because it’s less expensive to use models," Rotea said. "Industry has the ability to develop good models to analyze the vibratory responses of bladed disks. But these models are very complicated. They contain lots of unpredictable parameters, and what was lacking, in my opinion, was a good method to analyze those models to help them extract the numbers they need to say, ’This is a good design or this is a bad design.’"

The software he developed with former graduate student Fernando D’Amato is based on an "optimization algorithm," which is a step-by-step procedure for solving a mathematical problem. This algorithm calculates the worst-case vibration level of the blades due to variations in mechanical properties.

A model of the bladed disk and the range of the possible variations are required to run this algorithm. Although it is difficult to predict exactly which variations a specific blade will have, engineers know what the range is.

"Some parameters change during the life of the engine," Rotea said. "For example, you have blades that get nicked or they wear and they change mechanical properties."

"How do you incorporate that into the model? You cannot predict all those variations that the engine will see in the field. But if you know the ranges for these parameter variations, you can determine the worst-case effect the parameter changes will have in the blade stress and vibration levels without actually searching through all possibilities.

"What we did was to develop an optimization algorithm that calculates the things they want much more efficiently," he said. "We use optimization not to do the design but to actually predict the worst-case behavior over a known range of parameters."

The algorithm analyzes one blade, or a small group of blades, and deduces the worst-case vibration level of any blade in the disk.

The time it takes to calculate the worst-case vibration level grows with the number of parameters that must be considered. The optimization algorithm that was developed by Rotea and D’Amato is about one and a half times faster for each parameter, compared with more conventional software tools.

"The more parameters there are, the more time is saved, Rotea said. "That means bigger problems are solved even more efficiently than smaller ones. If there are 60 parameters, the time savings is very large."

He estimates that, for the average job, the tool is more than 100 times faster than other tools on the market.

The work has been funded by the National Science Foundation and private industry.

Writer: Emil Venere, (765) 494-4709, venere@purdue.edu

Source: Mario Rotea, (765) 494-6212, rotea@ecn.purdue.edu

Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Emil Venere | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/020903.Rotea.optimize.html

More articles from Information Technology:

nachricht Multifunctional e-glasses monitor health, protect eyes, control video game
28.05.2020 | American Chemical Society

nachricht Researchers incorporate computer vision and uncertainty into AI for robotic prosthetics
28.05.2020 | North Carolina State University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Black nitrogen: Bayreuth researchers discover new high-pressure material and solve a puzzle of the periodic table

29.05.2020 | Materials Sciences

Argonne researchers create active material out of microscopic spinning particles

29.05.2020 | Materials Sciences

Smart windows that self-illuminate on rainy days

29.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>