Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Navigate via the web with the SisNet receiver

09.09.2002


Knowing your precise position anytime via the internet is now possible thanks to the Signal in Space through Internet (SisNet) technology developed by the European Space Agency.



This technology combines the powerful capabilities of satellite navigation and the internet. As a result, the highly accurate navigation information that comes from the European Geostationary Navigation Overlay Service (EGNOS) Signal-in-Space (SIS) is now available in real time over the internet.

EGNOS is Europe’s first step in satellite navigation, paving the way for Galileo. At present it is in its final development phase and will become operational in spring 2004. An experimental EGNOS signal has been available since February 2000 through the EGNOS test bed (ESTB). EGNOS is what is called an augmentation signal: it corrects and improves the signals sent by the American GPS constellation, using geostationary satellites and it offers a precision in the order of 1 to 2 m as opposed to the 15 to 20 m presently available with GPS signals. In addition, EGNOS provides an Integrity signal through which the user can assess in quasi real time how much he can trust the GPS estimated position. The challenge is how to make the best use of this corrected data.


To access it a SISNET receiver has been developed through a contract between ESA and the Finnish Geodesic Institute (FGI). This device uses three technologies: a pocket ipack type PC, a mobile phone card (GSM or GPRS) and a GPS card receiver. Combining these three technologies: satellite navigation, digital software and internet access, offers a prototype of what looks set to become the tool of the future - a clever computer-phone that knows exactly where it is.

Dr Ruizhi Chen, head of the navigation department at FGI, says that the receiver he created "will evolve in the future, but already the possibilities are tremendous, capitalising on internet capabilities".

Tests have been under way to validate the concept. The SisNet receiver was installed in a car which, while being driven on the roads around Helsinki, gave its position with an accuracy of less than two metres.

For Dr Javier Ventura-Traveset, EGNOS Principal System Engineer and responsible for SisNet development at ESA, "this is the first time we demonstrate both the accuracy of EGNOS and the possibility to obtain, in real time, EGNOS navigation data by using the internet."

This receiver is of special interest as it can be used not only in cars but also in many other situations as it is a hand-held device. Access to satellite data via the internet also allows the user to keep on navigating even when out of range of a geostationary satellite, something which can be useful when travelling in towns where buildings interfere with signal reception. Indeed SisNet extends the service area of EGNOS to regions that can only be reached by EGNOS with difficulty as, in combination with mobile links, it can be used in urban areas.

For the time being, the receiver is made out of existing elements designed for other purposes, but commercially viable receivers are now being developed in cooperation with several European industries. Once the Galileo European satellite navigation system is deployed in 2008, this receiver will offer accurate satellite navigation services, with all the advantages of internet access. As Javier Ventura-Traveset says, "the use of SisNet is only limited by our imagination!".

Dominique Detain | alfa
Further information:
http://www.esa.int

More articles from Information Technology:

nachricht Intelligent Deletion of Superfluous Digital Files
21.02.2020 | Otto-Friedrich-Universität Bamberg

nachricht High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"
19.02.2020 | Universität Stuttgart

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>